preview

Sealed Air Company Hbs Case Essay

Decent Essays

For the exclusive use of M. HUSSAIN
Harvard Business School 9-582-103
Rev. September 24, 1985

Sealed Air Corporation
The president and chief executive officer of Sealed Air Corporation, T. J. Dermot Dunphy, explained the firm’s 25% average annual growth in net sales and net earnings from 1971 to 1980: The company’s history has been characterized by technical accomplishment and market leadership. During the last 10 years we built on our development of the first closed-cell, lightweight cushioning material, introduced the first foam-in-place packaging system, and engineered the first complete solar heating system for swimming pools. We intend to follow the same management guidelines in the 1980s. We intend to seek market leadership …show more content…

Two GAFCEL salespeople—one full time, the other about half time—had reached a $1 million annual sales rate. Several of AirCap’s distributors had taken on the GAFCEL line. Hauser was preparing to recommend Sealed Air’s reaction to these somewhat unanticipated competitors. The firm could produce an uncoated bubble as cheaply as GAFCEL within a month with no major capital investment; it could run on machines used for another Sealed Air product. If Hauser were to recommend that the historic champion of barrier-coating offer an uncoated bubble, he would have to specify timing, the marketing program for the new product, and any adjustments in policies for AirCap cushioning and Sealed Air’s other products. As Hauser thought about his options, he again flipped through the training manual recently distributed to Sealed Air’s sales force: “How to Sell against Uncoated Bubbles.”

The Protective Packaging Market
The three major use segments of the protective packaging market were: 1. Positioning, blocking, and bracing: These protective materials had to secure large, heavy, usually semirugged items in a container. Typical applications included shipment of motors and computer peripherals. 2. Flexible wraps: These materials came under less pressure per square foot. Applications included glassware, small spare parts, and light medical instruments. 3. Void fill: These

Get Access