preview

Reactivity Of Tert-Butyl Chloride Lab Report

Good Essays

Courtney Copeland
Alexis Madrazo
TA: Katrinah Tirado
October 10, 2017
Synthesis and Reactivity of tert-butyl Chloride via an Sn1 Reaction
Copeland 1
Introduction/Background
Substitution reactions are important chemical processes that contribute to the production of new compounds. Simplistically, these reactions take place through a series of steps in which one functional group is replaced by another (March). There are two types of nucleophilic substitution reactions, first-order and second-order, but this experiment only involves the Sn1 first-order reactions. Sn1 reactions are considered unimolecular meaning that only one molecule is involved in the rate determining step, the slowest step of the reaction which determines the overall speed of the reaction. In contrast, Sn2 reactions are considered bimolecular, and complete the substitution reaction in one step. The main components of these reactions are the nucleophile and the leaving group; a nucleophile replaces the leaving group by donating its electrons to form a new bond to the carbon (Weldegirma). For this experiment, the nucleophiles and leaving groups of the Sn1 reactions are alkyl halides and alcohols respectively. When a hydrogen atom is replaced by halogen in an alkane, the resulting compound is referred to as a alkyl halide. There are certain factors that affect both Sn1 and Sn2 reactions which include the structure of the substrate, and the concentration and reactivity of the nucleophile (Sn2 only). If a

Get Access