Introduction
Most Organisms on earth have a process of water movement in their cell; in other words, they go through a process called osmosis. Osmosis is a form of diffusion in which water diffuses through a selectively permeable membrane from hypotonic concentration into hypertonic, or low to high concentration. For that reason, we set out to investigate a scientific question, which was to determent what the concentration of salt will be in potato. We used the information we gathered in class to find out if the different levels of salt concentration will affect water movement in the potato. In today’s lab, the main goal of the experiment will be to examine and observe the concentration of salt. The evidence gathered in this class stated that
…show more content…
However, if the concentration of the solution is smaller than, the potato cell, the potato cell will gain water because the solution will become hypotonic, meaning water will move from the beaker into the potato. In addition, if the potato’s weight remains the same after being soaked in the salt solution then the solution will be in the isotonic condition because osmosis does not occur in isotonic solution. Therefore, our assumption for this lab experiment is to detect if different salt concentration will reduce the osmosis movement in the potato while comparing it with pure water. Furthermore, if water moved into the potato the solution would be hypotonic which affects the potato’s weight meaning the concentration of the salt in the beaker will become low. If the potato loses weight, the solution will be called hypertonic or will have high concentration in the beaker. In this experiment we used four beakers, this beakers have a different salt solution, a solution with 0M (molar), 0.2M, 0.4M, and 0.6M by doing so we determined the concentration of salt in the potato and see which salt concentration solution make a change by gaining, losing or remain the same in the potato by measuring the water movement from one place …show more content…
Additionally, we examined how the potato reacts when we have a different concentration solution. Depend on this experiment our data determines that, if the amount of salt solution increases the osmosis movement in the potato will decrease, or the potatoes will loss weight which the result supports our hypothesis, but if the amount of the salt solution decreases the osmosis in the potato piece will increase or the potato will gain water. Our data and report showed that the hypothesis was right, and the result is as we expected, but if we added some independent variable for example if we change the salt solution to different solution we should see more result than we saw in this experiment. The result we get on this experiment supports our hypothesis because we find the reliable result as we learned in this class. However there are several factors that can cause our result, one of the factors that can cause our result could be when we measure our potato before and after can cause the result. Another factor that affect our result cloud be the salt solution concentration measurement may not be accurate that can affect our result as well as the first reason. For future improvement, we need to make sure that the size and the weight of the potatoes are equal, and the solution is accurate, and measuring the potato correctly before and after we soaked in the solution. If I
My prediction is that as the concentration increases, the potato cell will lose more weight. This is because of the osmosis of water particles from the potato cell cytoplasm to the solution, resulting in a loss of weight. As the concentration decreases, the potato will lose less weight until a certain point where the osmosis of particles in and out of the potato cells will be equal. I also predict that as the salt
The Osmosis and Diffusion lab was conducted to provide us with information on how built up mucus affects those conflicted by the recessive genetic disease, Cystic Fibrosis., due to a mutation to the membrane regulating chloride (Cl-). This mutation prevents the Cl- from leaving the cell causing the amount of sodium (Na+) in epithelial cells, which results in extreme mucus on the lungs and airways causing this disease to be fatal if not treated but treatment does not equate to a long lifetime. During the lab we took the data from three parts: Diffusion, Osmosis in an Elodea Cell, and finally the Role of Osmosis in Cystic Fibrosis. During Part 1 we looked at diffusion across a semipermeable membrane for starch and glucose, which resulted in both having a negative solution when placed in a semipermeable membrane. Then we looked at osmosis in the Elodea Cell to watch for the occurrence of Plasmolysis, when a cell’s plasma membrane pulls away from the cell, and how a plant cell is affected by both hypertonic and hypotonic solutions. Finally, we observed the role of Osmosis in Cystic Fibrosis using dialysis bags to represent a normal cell and a Cystic Fibrosis cell with the normal containing 1% NaCl while the Cystic Fibrosis bag contained 10% NaCl. After we ran the experiment, we looked at the Percent Change in Mass and compared them after 30 minutes. We found that Cystic Fibrosis cells didn’t change mass as much as the normal cell ending with a change in mass over -1%. The
I know that osmosis will occur in the vegetables, but I am not sure of
The lab for this paper was conducted for the topic of osmosis, the movement of water from high to low concentration. Five artificial cells were created, each being filled with different concentrated solutions of sucrose. These artificial cells were placed in hypertonic, hypotonic, or isotonic solutions for a period of 90 min. Over time, the rate of osmosis was measured by calculating the weight of each artificial cell on given intervals (every 10 minutes). The resulting weights were recorded and the data was graphed. We then could draw conclusions on the lab.
The main purpose of the experiment was to test the idea that water would move from the higher concentration to the lower concentration. In order to test this theory, we placed potato slices in 7 different containers, each containing different concentrations of NaCl, to measure the weight change from osmosis. The containers ranged from 0M NaCl all the way to .6M NaCl. We measured the potato slices before and after placing the slices in the solutions and recorded the net change in weight to determine the tonicity of the potato cells. Our results showed that the potato slices put in a NaCl solution of .2M or higher lost weight and the potato slices put in a NaCl solution of .1M or lower gained weight. This shows that the osmolarity of the potato falls within the range of .1M to .2M, and it also proves the process of Osmosis by having the higher concentration move to the lower concentration. In addition to this, it can be concluded that the osmolarity of cells can be determined by observing the affects of osmosis.
Van’t Hoff’s Law suggests that the osmotic potential of a cell is proportional to the concentration of solute particles in a solution. The purpose of this experiment was to determine if there are any differences between the osmolalities, the no-weight-changes of osmolalities, and the water potentials of potato cores in different solutions of different solutes. The percent weight change of the potato cores was calculated through a “change in weight” method. The potato core’s weight was measured before and after they were put into different concentrations of a solute for 1.5 hours. In our experiment, there were no significant differences from the osmotic potentials of our results and the osmotic potentials of other scientists work. Ending with chi square values of 2.17 and 2.71, and p values of 0.256 and 0.337, concluding that there is no difference in water potentials of potato cores in different solutions of different solutes at varying concentrations.
However one beaker received 100 mL of Deionized water with a molarity of 0.0. Afterwards a cork borer was pushed through the potato and was twisted back and forth. Once the borer was filled it was removed from the potato. Pushing the potato cylinder out of the borer, this this step was repeated six more times in order to get seven undamaged potato cylinders. Using a sharp razor blade, the potato cylinders were both cut to a uniform length of about 5cm, and were removed of their potato skins. The potato pieces were also cut in half to give the cells a greater surface area in which it was easier to absorb the solution. After the cylinders were weighed on a balance and the data was recorded in Table 4. Using the razor blade each potato was cut lengthwise into two long halves. Then the potato pieces were transferred to the water beaker and the time they were submerged was recorded. This step was repeated for all potato cylinders in which the pieces were placed in solutions 0.1 to 0.6 M. The potatoes were incubated for ninety minutes. At the end of the incubation period the time was recorded. Then the potato piece was removed form the first sample. Next potato pieces were weighed the and the final weight was recorded in Table 4. This procedure was repeated until all samples had been weighed and recorded in the chronological order they were initially placed in the test solution. Afterwards the table was completed by recording the
Osmosis is defined as the tendency of water to flow through a semipermeable membrane to the side with a lower solute concentration. Water potential can be explained by solutes in a solution. The more positive a number is more likely it will lose water. Therefore should water potential be negative the cell the less likely it will lose water. In using potatoes the effects of the molarity of sucrose on the turgidity of plant cells. According to Clemson University, the average molarity of a White potato is between .24 M and .31 M when submerged in a sorbitol solution. This experiment was conducted with the purpose of explaining the relationship found between the mass in plants when put into varying concentrations of sucrose solutions. Should the potatoes be placed in a solution that contains 0.2M or .4M of sucrose solution it will be hypotonic and gain mass or if placed in .6M< it will be hypertonic and lose mass instead. Controlled Variables in this lab were: Composition of plastic cups, Brand of Russet Potatoes, Brand of Sweet Potatoes and the Temperature of the room. For independent variable that caused the results recorded it was the different Sucrose concentrations (0.0M, 0.2M, 0.4M, 0.6M, 0.8M, 1M). The dependent variable was the percentage change from the initial weighs to the final. The cup with .4 molarity was the closest to an isotonic solution and was used as the control group for the lab. Water potential is the free energy per mole of water. It is
Showing an example of diffusion with the water molecules equally back and forth the semi-permeable membrane of the potatoes and the saucer of water. The hypertonic solution of salt water has given an example of osmosis. The water molecules passed through the semi-permeable membrane out of the potatoes but weren’t able to get back in as easily due to the salt blocking the membranes passage. This left the potatoes in the salt water saucer feeling flexible and spongy almost leaving the potato a little
Osmosis is the movement of water molecules from high concentration to low concentration through semipermeable membranes, caused by the difference in concentrations on the two sides of a membrane (Rbowen, L.). It occurs in both animals and plants cells. In human bodies, the process of osmosis is primarily found in the kidneys, in the glomerulus. In plants, osmosis is carried out everywhere within the cells of the plant (World Book, 1997). This can be shown by an experiment with potato and glucose/salt solution. The experiment requires putting a piece (or more) of potatoes into glucose or salt solution to see the result of osmosis (a hypertonic type of solution is mostly used as it would give the most prominent visual prove of
As we can see in Figure’s 1.2 and 1.3, when there was no sucrose solution, the potato increased in weight. This is due to the fact that the sucrose solution was hypertonic in comparison to the potato slice. Through osmosis, the solution moved along the concentration gradient and into the potato slice making it hypotonic. When there were higher concentrations of sucrose solution, the potato decreased in weight. This is due to the fact that the potato was hypertonic in comparison to the potato. Through osmosis, sucrose from the potato moved along the concentration gradient out and into
Osmosis is a natural occurrence constantly happening within the cells of all living things. For osmosis to occur, water molecules must move across a semipermeable membrane from an area of low concentration to an are of high concentration. In order to understand osmosis, people must understand the different types of concentrations that can be present within solution. One of them is an Isotonic solution where the concentration of dissolved particles is equal to that of a cell’s. Another is a hypertonic solution where there is a higher concentration of dissolved particles then inside the cell. And lastly there is a hypotonic solution where there are less dissolved particles than inside the cell. As dissolved particles move to a region of lower concentration, water moves the opposite direction as a result of there being less water in the highly concentrated region. In this experiment, gummy bears were placed in salt water, sugar water, and tap water to find the measure of osmosis between the solution and gummy bear.
In this experiment, the osmotic concentration is found with potato slices placed in sucrose solutions. Osmosis in this model is the net movement of water between the potato cell and the sucrose solution. The movement of water is determined by the molarity of sucrose. As the molarity of sucrose increased then the concentration in the solution also increased. H2O will move through the cell membrane to areas of higher concentration in order to reach equilibrium. If cells are placed
Osmosis is the diffusion of water across a membrane to create an equilibrium between the levels of concentration of a solute both inside and outside the cell. In this case the solute will be sugar as the potato core will be immersed in sucrose solution.
out the potato and dry it to ensure excess water is not added to the