Plasmid transformation of E. coli using pVIB
Savannah Jacobs
April 4th, 2016
BIO 335 Spring 2016
Dr. Koester Abstract Since bacteria are haploid, asexually reproducing organisms it is important for these organisms to be able to accept genetic variability into their genome. A process called transformation, which involves absorbing small segments of DNA from deceased organisms in the natural world, does this. Transformation can also be mimicked in the laboratory using plasmid. Plasmids are small segments of DNA that occur in bacteria that allow us to regulate if transformation was successful. We attempted transformation of E. coli cells using plasmid called pVIB, which allows for luminescence and resistance to the antibiotic ampicillin, from Vibrio fischeri, however, we did not achieve a successful transformation.
Introduction
Some organisms, such as bacteria, have the ability to transform into a new form by picking up small segments of DNA from other organisms. This process is known as transformation and happens quite often in nature. Quite often organisms die and release their DNA into aqueous environments. The DNA is broken down but it is a while before it is fully destroyed allowing for bacteria cells and other organisms to transform their own DNA using the broken down segments from the deceased organism (Dodd). Transformation is an extremely important step in increasing genetic variation in organisms that reproduce asexually, allowing for them to make both
Abstract In this lab of transforming bacteria that was experiment today, I will be identifying the process of bacterial genetic transformation and how to calculate transformation efficiency. The samples that will be used in today’s bacteria will contain samples of E.coli sand inserted DNA plasmid into their genetic sequence. If done correctly the results will show a successful genotypic and phenotypic mutations, which will display fluorescent under ultra-violent lights or show signs to being resistant to ampicillin. This experiment was primarily for the purpose of growing E. Coli bacteria.
Control plasmids lux and pUC18 were introduced into E. Coli through a process of transformation.
The purpose of this experiment was to show the genetic transformation of E. coli bacteria with a plasmid that codes for Green Fluorescent Protein (GFP) and contains a gene regulatory system that confers ampicillin resistance. A plasmid is a genetic structure in a cell that can replicate independently of chromosomes. In this lab, the Green Fluorescent Protein, which is typically found in the bioluminescent jellyfish Aequorea Victoria, was cloned, purified, and moved from one organism to another with the use of pGlo plasmids. It was hypothesized that if bacteria that were transformed with +pGlo plasmids are given the gene for GFP, then transformed cell colonies
The plasmid pGLO contains an antibiotic-resistance gene, ampR, and the GFP gene is regulated by the control region of the ara operon. Ampicillin is an antibiotic that kills E. coli, so if E. coli, so if E. coli cells contain the ampicillin-resistance gene, the cells can survive exposure to ampicillin since the ampicillin-resistance gene encodes an enzyme that inactivates the antibiotic. Thus, transformed E. coli cells containing ampicillin-resistance plasmids can easily be selected simply growing the bacteria in the presence of ampicillin-only the transformed cells survive. The ara control region regulates GFP expression by the addition of arabinose, so the GFP gene can be turned on and
This experiment was designed to test and observe the transformation efficacy of the pUC18 and lux plasmids in making E. coli resistant to ampicillin. Both plasmids code for ampicillin resistance, however, the lux plasmid codes for a bioluminescence gene that is expressed if properly introduced into the bacteria’s genome. The E. coli cultures were mixed with a calcium chloride solution and then heat shocked, allowing the plasmids to enter the bacteria and assimilate into the bacterial DNA. The plasmids and the bacteria were then mixed in different test tubes and then evenly spread onto petri dishes using a bacterial spreader, heating the spreader between each sample to make sure there is no cross contamination. Each of the dishes was labeled and then incubated for a period of 24 hours. The results were rather odd because every single one of the samples grew. Several errors could have occurred here, cross contamination or possibly an error in preparation as every single sample in the class grew, meaning all samples of the bacteria transformed and became ampicillin resistant.
This lab is about moving genes from one thing to another using plasmids. Plasmid has the ability to replicate, so it replicates independently, and separately from the chromosomal DNA. Plasmid are one or more small piece of DNA and they enter cells as a double strand DNA. When they enter the cell as a doubke strand they do not invade he chromosomal DNA. We will also transform bacteria into GFP which is mainly from the jelly fish Aequorea Victoria. The GFP causes the the jelly fish to fluorescent and glow in the dark. After the transformation, bacteria starts to make the GFP which causes them to glow a green color under a ultraviolet light.
The purpose of this lab is to use genetic engineering to transform E. coli bacteria by inserting the plasmid pGLO, and to then see if the bacteria was transformed by using the antibiotic, ampicillin.
This pBlu lab had for purpose to present the changes of the strain of E. coli bacteria due to new genetic information being introduced into the cell. In this experiment we are freezing and heat shocking the E. Coli bacteria that is then forced to take the plasmid DNA. The E. coli then transforms the pBLu plasmid, which carries the genes coding for two identifiable phenotypes. After following the Carolina Biological steps our lab worked well and we able to see some colonies of bacteria on the plates. The x-gal plate showed a significant amount of bacteria to confirm that the pBlu plasmid took over the E. coli strain.
How does the addition of pGLO plasmid to a solution containing E. coli bacteria affect the growth and characteristics of the bacteria? Genetic transformation is the incorporation of foreign DNA into an organism to potentially change the organism’s trait. Plasmids are small circular DNA that replicate separately from the bacterial chromosome. In nature, these plasmids can be transferred between bacteria allowing for the sharing of beneficial genes. Due to this characteristic, plasmids allow for genetic manipulation and can be moved between bacteria easily. The pGLO plasmid utilized in this experiment encodes the gene for Green Fluorescent Protein (GFP), which under the right conditions can produce a glow. The gene regulation system present in the pGLO plasmid requires
In the pGLO Bacterial Transformation lab, Escherichia coli is transformed with a gene encoding green fluorescent protein by inserting a plasmid containing the GFP gene, beta-lactamase, and arabinose into the bacterium. Successfully transformed bacteria will grow in the presence of ampicillin and glow a bright green color under ultraviolet light. The sugar arabinose is responsible for switching on the GFP gene in the transformed cells, without it, the gene will not be expressed.
For this experiment, E. coli was best for genetic engineering because of their size, and their fast reproduction (Spilios, 2017). E. coli will be genetically transformed using an engineered plasmid. A plasmid is a circular piece of DNA which independently replicates and multiplies because it has its own origin of replication (Spilios, 2017). The pGLO is the plasmid used in this experiment. Plasmids are used as vectors and they contain manipulated genes such as genes coding for antibiotic resistance for drugs like ampicillin. This antibiotic resistance of such serves as the selectable marker in genetic transformation and for genetic transformation to proceed, the cell must reach competency which is the physiological state that is required for the vector plasmid to get into the cell for transformation (Spilios, 2017). While competency can be reached naturally in some organism, it must be reached artificially in E. coli through treatment with CaCl2 and exposing them to heat shock using incubation (Spilios, 2017).
This experiment focuses on genetic engineering and transformation of bacteria. The characteristics of bacteria are altered from an external source to allow them to express a new trait, in this case antibiotic resistance. In is experiment foreign DNA is inserted into Escherichia coli in order to alter its phenotype. The goal of the experiment is to transform E. coli with pGLO plasmid, which carries a gene for ampicillin resistance, and determine the transformation efficiency. The bacteria are transformed by a combination of calcium chloride and heat shock. When the bacteria are incubated on ice, the fluid cell membrane is slowed and then the heat shock
This experiment was performed to assess the efficacy of genetic transformations on bacteria via plasmid DNA coding for ampicillin resistance and green fluorescent protein. Genetic transformation was studied by taking transformed and untransformed Escherichia Coli (E. coli) and placing them on various media to observe gene expression via growth and color under UV light. The transformed E. coli were able to grow on ampicillin while the untransformed E. coli, which lacked the plasmid genes for ampicillin resistance, only grew on nutrient broth. In the presence of arabinose, the transformed E. coli glowed green. These results support the previous scientific understanding of bacterial competency, vectors, and gene expression and support gene transformations as an effective method to transfer the desirable DNA of one organism into another organism’s DNA. These results can be applied to real world issues such as medical treatments, food production, and environmental conservation.
Plasmids are small double stranded circular non chromosomal DNA molecules containing their own origin of replication. Hence, they are capable of replication independent of the chromosomal DNA in bacteria. Plasmids present in one or more copies per cell, can carry extra chromosomal DNA from one cell to another cell and serve as tools to clone and manipulate genes. Plasmids used exclusively for this purpose are known as vectors. The genes of interest can be inserted into these vector plasmids creating a recombinant plasmid. Recombinant plasmids can play a significant role in gene therapy, DNA vaccination, and drug delivery [Rapley, 2000].
Bacterial transformation is the process of moving genes from a living thing to another with the help of a plasmid.The plasmid is able to help replicate the chromosomes by themselves; laboratories use these to aid in gene multiplication. Bacterial transformation is relevant in everyday lives due to the fact that almost all plasmids carry a bacterial origin of replication and an antibiotic resistance gene(“Addgene: Protocol - How to Do a Bacterial