Osmosis & Diffusion lab Report The question that is being asked in this lab is what happens when the egg is put in an acid bath, water bath, then a corn syrup bath. In the acid bath the egg will do something to the shell. The hypothesis that was created for the acid bath is that if the egg is put in the acid bath then the acid will destroy the cell because the acid will eat away at the calcium of the shell. The hypothesis that was created for the water bath then the egg will increase in mass because the water starts to fill the egg. The hypothesis that was created for the cron syp bath is that if the egg is placed in the corn syrup bath the egg will weigh less because the water will leave the egg and corn syrup eats away ah the egg. The
1. The relationship between rate of diffusion/ osmosis, volume, and surface area can be easily seen and analyzed through the data that was collected from procedure one: Surface Area and Cell Size. Phenolphthalein is a dye-material in this lab that was used to determine whether a substance was an acid or base. This could be told as the phenolphthalein changed into a murky. Muddled and clouded color when mixed with acids. When the chemical aid was mixed in with a base, the color
If Michael’s mistake had been caught earlier, is there anything that could have been done to prevent the corn from dying?
Diffusion is the transfer of molecules from an area that has a higher concentration to an area that has a lower concentration. Osmosis is the diffusion of water. The purpose of this experiment was to study the process of osmosis. In order to test osmosis, eggs that had been soaking in vinegar were taken and placed in four beakers of solution with different levels of glucose. Using this experiment we were able to determine the rate of osmosis of different solutions, with various amounts of glucose, through eggs. In the results of this lab it was found that the eggs were either hypertonic or hypotonic and that the
The Osmosis and Diffusion lab was conducted to provide us with information on how built up mucus affects those conflicted by the recessive genetic disease, Cystic Fibrosis., due to a mutation to the membrane regulating chloride (Cl-). This mutation prevents the Cl- from leaving the cell causing the amount of sodium (Na+) in epithelial cells, which results in extreme mucus on the lungs and airways causing this disease to be fatal if not treated but treatment does not equate to a long lifetime. During the lab we took the data from three parts: Diffusion, Osmosis in an Elodea Cell, and finally the Role of Osmosis in Cystic Fibrosis. During Part 1 we looked at diffusion across a semipermeable membrane for starch and glucose, which resulted in both having a negative solution when placed in a semipermeable membrane. Then we looked at osmosis in the Elodea Cell to watch for the occurrence of Plasmolysis, when a cell’s plasma membrane pulls away from the cell, and how a plant cell is affected by both hypertonic and hypotonic solutions. Finally, we observed the role of Osmosis in Cystic Fibrosis using dialysis bags to represent a normal cell and a Cystic Fibrosis cell with the normal containing 1% NaCl while the Cystic Fibrosis bag contained 10% NaCl. After we ran the experiment, we looked at the Percent Change in Mass and compared them after 30 minutes. We found that Cystic Fibrosis cells didn’t change mass as much as the normal cell ending with a change in mass over -1%. The
Diffusion and Osmosis Experiment with a Shell-Less Egg After Three days of Testing Methods with Water and Corn Syrup
Table 1 shows the contents of the bags and the content of the concentration it was submersed in. Bags 2-4 each contain a solution of both sucrose and water. These bags were each put into beakers containing hypertonic solution. These bags gained weight over time because the water moved from its high concentration inside the beaker to the low concentration inside the membrane of the artificial cell, the membrane being the bags that consisted of dialysis tubing. The
The eggs will increase and decrease in mass when placed solutions with different amount of solutes. This
Osmosis is defined as the tendency of water to flow through a semipermeable membrane to the side with a lower solute concentration. Water potential can be explained by solutes in a solution. The more positive a number is more likely it will lose water. Therefore should water potential be negative the cell the less likely it will lose water. In using potatoes the effects of the molarity of sucrose on the turgidity of plant cells. According to Clemson University, the average molarity of a White potato is between .24 M and .31 M when submerged in a sorbitol solution. This experiment was conducted with the purpose of explaining the relationship found between the mass in plants when put into varying concentrations of sucrose solutions. Should the potatoes be placed in a solution that contains 0.2M or .4M of sucrose solution it will be hypotonic and gain mass or if placed in .6M< it will be hypertonic and lose mass instead. Controlled Variables in this lab were: Composition of plastic cups, Brand of Russet Potatoes, Brand of Sweet Potatoes and the Temperature of the room. For independent variable that caused the results recorded it was the different Sucrose concentrations (0.0M, 0.2M, 0.4M, 0.6M, 0.8M, 1M). The dependent variable was the percentage change from the initial weighs to the final. The cup with .4 molarity was the closest to an isotonic solution and was used as the control group for the lab. Water potential is the free energy per mole of water. It is
Osmosis is a special type of diffusion where water molecules move down a concentration gradient across a cell membrane. The solute (dissolved substance) concentration affects the rate of osmosis causing it either to speed the process up or slow it down. Based on this, how does different concentrations of sucrose affect the rate of osmosis? If sucrose concentration increases in the selectivity-permeable baggies, then the rate of osmosis will increase.
Cells are always in motion, energy of motion known as kinetic energy. This kinetic energy causes the membranes in motion to bump into each other, causing the membranes to move in another direction – a direction from a higher concentration of the solution to a lower one. Membranes moving around leads to diffusion and osmosis. Diffusion is the random movement of molecules from an area of higher concentration to an area of lower concentration, until they are equally distributed (Mader & Windelspecht, 2012, p. 50). Cells have a plasma membrane that separates the internal cell from the exterior environment. The plasma membrane is selectively permeable which allows certain solvents to pass through
The following hypothesis was made in regard to effect of the concentration gradient on the rate of diffusion: The higher the concentration gradient, the faster the rate of diffusion.
First I gather all my materials needed for the experiment (see materials list). Second I peel and slice potatoes weigh each potato in grams. Get these slices to weigh the same in mass because if they vary to much in mass that could affect the results of the experiment. Third I place each potato in its own beaker. Fourth once the potatoes are placed in beakers I make sure to place enough solution to fully cover the potato. Each beaker should have a different amount of
Purpose: The purpose of this lab is to familiarize you with osmosis and, specifically, what happens to cells when they are exposed to solutions of differing tonicities.
The hypothesis states that if the solution is hypotonic the results will decrease, if the solution is hypertonic the results will increase and if the solution is isotonic the solution will vary and or remain constant. In order to test the predictions of the hypotonic, hypertonic, and isotonic hypothesis for the solution made during the study, four samples of sucrose were taken and placed into two different beakers each containing a different concentration. Then dialysis tubing A was placed into beaker 1 with B, C, and D placed into beaker 2 for 45 minutes and weighted at 15 minute intervals. My finding in the study was that each of the four samples changed from their initial weight and for the most part accurately proved the hypothesis.
Osmosis is when water passes through a cell membrane, it is also form of a diffusion, which is a form of passive transport. Osmosis will continue to until an equilibrium is reached which is when the solutions are isotonic. This means that the solution has the same amount of solute on both sides. If the solution is hypertonic, it has more solute in the solution. In this situation water will move towards it. if the solution is hypotonic, it has less solute in the solution. Whereas in this situation, water will move out of the solution.