In gene expression DNA, the blueprint of life is transcribed into RNA, a nucleic acid that acts as a messenger carrying instructions that control the synthesis of proteins. Gene expression is vital to determining cell functions and exactly how much protein should be produced by the cell. The process in which the end proteins are modified can also be manipulated by researchers. The types of cells which are typically handled in laboratories include prokaryotes. Escherichia coli is a bacteria found in the human digestive system, preventing other pathogens from residing. Certain E. coli strains can be pathogenic and can lead to food poisoning, urinary tract infections, pneumonia, and gastrointestinal infections. Ampicillin is an antibiotic …show more content…
During this study, plasmids with ampicillin resistance (pAMP) known as pUC18, were manipulated due to their stability in extreme environments. The pUC18 plasmid pAMP gene codes for the production of beta-lactamase, an enzyme utilized in the breakdown of ampicillin. Once E. coli obtains this gene, it is able to survive in an environment that is ampicillin-rich. Lux plasmids were the second type used to provide bioluminescence in the cultures of E. coli grown. The lux plasmid contains genetic material which codes for luciferase, an enzyme which catalyzes bioluminescence, a light-emitting reaction. This is considered the marker where transformation efficiency can be analyzed through the light emissions.
Several techniques were implemented in this study to improve E. coli bacterias competency, the ability for a cell to uptake genetic material. These procedures were necessary considering the bacteria does not allow for transformation so efficiently in natural circumstances. Since it lacks the ability to do so, the uptake of material would be limited despite the preventative measures taken. To neutralize the negatively charged DNA in E. coli, the use of CaCl2 (sodium chloride), a positively charged solution, dissociates the calcium from chloride, which enters the cells and alters the charge. This process is known as electroporation. This causes the bacteria cells to swell and the calcium molecules help adjust the cell membrane to become
As predicted the E. coli colony transformed with either the PUC18 or the lux plasmid developed an ampicillin resistance. Which made it easier for them to not only survive but also replicate in both the LB agar plates and the LB ampicillin rich agar plate. However the E. coli colony not treated with the plasmids could not survive and colonize in the LB ampicillin rich agar plates. The plate that had no ampicillin in its environment and no plasmid treated E. coli served as a positive control for this experiment because it demonstrated how the E. coli would colonize and grow in a normal setting. The cells in the positive control plate grew into lawn colonies because they were not placed into a selective environment or transformed, so they had no need to acquire ampicillin resistance. Two plates in the experiment contained E. coli cells that were transformed with either the PUC18 or the lux plasmid but were placed in an ampicillin free environment. These two colonies grew
First, 50 uL of bacterial cells were made competent by being treated with 590 uL of CaCl2 in three different test tubes before transformation of the plasmids took place. In order to enhance the uptake of the plasmid DNA the instructor added the CaCl2 solution to the bacterial cells. The tubes were placed into a cold ice bath for about ten minutes after the CaCl2 solution was added into the test tubes of E. Coli.
The experimental part of the lab consists of setting up the materials needed. A sample of E.coli and a solution of calcium chloride are first obtained and placed in different test tubes. 630µL of Calcium Chloride (CaCl2) are then removed from the test tube and inserted into the test tube containing E.coli cells (Alberte et al., 2012). The newly formed substance of Calcium Chloride and E.coli is then mixed and incubated in ice for 10 minutes, making the cells more competent. Two test tubes are obtained and labeled; the first test tube is labeled with pUC18 and the second one with “Lux” to represent the plasmids being used. These two test tubes are then incubated in ice. 3µl of the set plasmid are added to each of the two test tubes. The test tubes are tapped to guarantee the cells are well
The plasmid pGLO contains an antibiotic-resistance gene, ampR, and the GFP gene is regulated by the control region of the ara operon. Ampicillin is an antibiotic that kills E. coli, so if E. coli, so if E. coli cells contain the ampicillin-resistance gene, the cells can survive exposure to ampicillin since the ampicillin-resistance gene encodes an enzyme that inactivates the antibiotic. Thus, transformed E. coli cells containing ampicillin-resistance plasmids can easily be selected simply growing the bacteria in the presence of ampicillin-only the transformed cells survive. The ara control region regulates GFP expression by the addition of arabinose, so the GFP gene can be turned on and
This experiment was designed to test and observe the transformation efficacy of the pUC18 and lux plasmids in making E. coli resistant to ampicillin. Both plasmids code for ampicillin resistance, however, the lux plasmid codes for a bioluminescence gene that is expressed if properly introduced into the bacteria’s genome. The E. coli cultures were mixed with a calcium chloride solution and then heat shocked, allowing the plasmids to enter the bacteria and assimilate into the bacterial DNA. The plasmids and the bacteria were then mixed in different test tubes and then evenly spread onto petri dishes using a bacterial spreader, heating the spreader between each sample to make sure there is no cross contamination. Each of the dishes was labeled and then incubated for a period of 24 hours. The results were rather odd because every single one of the samples grew. Several errors could have occurred here, cross contamination or possibly an error in preparation as every single sample in the class grew, meaning all samples of the bacteria transformed and became ampicillin resistant.
The purpose of this experiment is to make E.Coli competent so that it can be transformed in order to become immune to ampicillin, then we would be able to determine the transformation efficiency of the culture. We determine this by preparing 4 plates of E.coli, each labeled “LB-plasmid”, “LB+plasmid”, “LB?Amp-plasmid”, and “LB/Amp+plasmid”. This meant that either should have lacked plasmid and Ampicillin, with plasmid but lacked Ampicillin, without plasmid but with Ampicillin, or were with Ampicillin and plasmid, respectively. Then we made the bacterial cells competent by adding CaCl2 to 2 vials of the colony (one with plasmids), and incubating on ice, then heat shocking, and returning to ice. Luria Broth is then added and left to sit for 5-15
The purpose of this lab is to use genetic engineering to transform E. coli bacteria by inserting the plasmid pGLO, and to then see if the bacteria was transformed by using the antibiotic, ampicillin.
The purpose of this study was to see whether E. Coli cells would engage in the pGLO plasmid and glow in the presence of four control environmental factors which are arabinose sugar, bacteria, the antibiotic ampicillin, LB nutrient broth and pGLO plasmid DNA. This was tested using four plates, all the plates had E. Coli cells and different environmental factors. The founding was that E. Coli will only fluoresce when bacteria, pGLO plasmid DNA, the antibiotic ampicillin, and LB nutrient broth are present. The result did not support the hypothesis because it stated that, E. coli cells that are exposed to the pGLO plasmid would engage in the plasmid and glow only if the arabinose sugar is present.
This pBlu lab had for purpose to present the changes of the strain of E. coli bacteria due to new genetic information being introduced into the cell. In this experiment we are freezing and heat shocking the E. Coli bacteria that is then forced to take the plasmid DNA. The E. coli then transforms the pBLu plasmid, which carries the genes coding for two identifiable phenotypes. After following the Carolina Biological steps our lab worked well and we able to see some colonies of bacteria on the plates. The x-gal plate showed a significant amount of bacteria to confirm that the pBlu plasmid took over the E. coli strain.
How does the addition of pGLO plasmid to a solution containing E. coli bacteria affect the growth and characteristics of the bacteria? Genetic transformation is the incorporation of foreign DNA into an organism to potentially change the organism’s trait. Plasmids are small circular DNA that replicate separately from the bacterial chromosome. In nature, these plasmids can be transferred between bacteria allowing for the sharing of beneficial genes. Due to this characteristic, plasmids allow for genetic manipulation and can be moved between bacteria easily. The pGLO plasmid utilized in this experiment encodes the gene for Green Fluorescent Protein (GFP), which under the right conditions can produce a glow. The gene regulation system present in the pGLO plasmid requires
In the pGLO Bacterial Transformation lab, Escherichia coli is transformed with a gene encoding green fluorescent protein by inserting a plasmid containing the GFP gene, beta-lactamase, and arabinose into the bacterium. Successfully transformed bacteria will grow in the presence of ampicillin and glow a bright green color under ultraviolet light. The sugar arabinose is responsible for switching on the GFP gene in the transformed cells, without it, the gene will not be expressed.
This experiment focuses on genetic engineering and transformation of bacteria. The characteristics of bacteria are altered from an external source to allow them to express a new trait, in this case antibiotic resistance. In is experiment foreign DNA is inserted into Escherichia coli in order to alter its phenotype. The goal of the experiment is to transform E. coli with pGLO plasmid, which carries a gene for ampicillin resistance, and determine the transformation efficiency. The bacteria are transformed by a combination of calcium chloride and heat shock. When the bacteria are incubated on ice, the fluid cell membrane is slowed and then the heat shock
Escherichia coli, or E. coli, is a common bacterium that can be found in diverse environments all over the planet, including the gastrointestinal tracts of animals and humans. Many of these strains of E. Coli are essential mechanisms in the digestive tract, while others are pathogens that can cause complications in urinary and intestinal tracts. (Payne & Sparks) In research, E. Coli is commonly used as a model organism, meaning they are widely studied by scientists for a variety of purposes due to their experimental advantages. E. Coli is comparatively simple, and there are many advantages to studying these prokaryotic cells in the fields of biochemistry and molecular biology. E. Coli has this simplicity and is relatively easy to propagate in a lab environment. Their genome has been completely sequenced and many things we know about DNA, protein synthesis, and gene linkage have been derived from studies regarding this particular organism. (Cooper)
In this lab, our purpose was to create a recombinant DNA of two plasmids pKAN-R and pARA, to create a plasmid that contains the rfp gene that will ultimately glow. To do this, we obtained two circular pieces of DNA, commonly known as plasmids. The two plasmids we worked with are called pKAN-R and pARA. The pKAN-R plasmid includes the kanamycin resistant gene. Kanamycin is an antibiotic that prevents bacteria from creating proteins, which ultimately kills the bacteria because cells need to perform protein synthesis to live. The kanamycin resistant gene encodes for phosphotransferase which is an enzyme that destructs the effects of the antibiotics by transferring a phosphate group to the kanamycin molecule. The pKAN-R plasmid also contains red
This experiment was performed to test the hypothesis if LB nutrient broth, +pGLO and -pGLO Ampicillin, and Arabinose was placed in the E. coli plates, then there will be a significant growth in the newly transformed bacteria and it will possess the ability to glow under UV light. The measurements were recorded from the bent glass tube in each glass test tube. The transformation protocol tested for the newly possessed traits in E.coli bacteria. Throughout the experiment there were many probable reasons for failure. If the pipettes and sterile loop were not thrown out in between each use, a cross contamination could cause a miscalculation in the experiment causing the data results to fail. The hypothesis that was tested was validated due to the positive results with each experiment stating that newly transformed organisms due in fact pass on traits.