Chemical and Environmental Effects on the Heart
Introduction
The heart is the centerpiece of the circulatory system, its muscular contractions allow for the timely delivery of essential gases and nutrients to virtually all cells of the body. The pressure created by the heart also plays a vital role in eliminating wastes through organs such as the kidney, thus the heart delivers and helps maintain nutrient and waste composition throughout the body. The heart, like all muscle cells, releases ionic calcium when stimulated which binds to troponin which in turn causes tropomyosin to uncover the myosin-actin binding sites on the muscle. Temperature has effects on the metabolism and activity of all cells. Warmer temperatures increase the
…show more content…
Following exposure to epinephrine, the heart was allowed to return to its resting state determined in procedure 1. This same procedure was repeated with the following chemicals: 1) Acetylcholine, 2) Atropine, 3) Calcium solution, 4) Nicotine solution, and 5) Caffeine solution.
Procedure 4: The Refractory Period of the Heart
Resting heart contractions were recorded for thirty seconds until the heart rate was less than 60 beats per minute. A stimulator electrode to be used was set to the following states: Amplitude of 4.00 Volts, a stimulus delay of 50ms, stimulus duration of 10ms, a frequency of 1.0Hz, and a pulse number of 30. The electrode was then placed in direct contact with the heart for 30 seconds at which time the data was observed and recorded.
Procedure 5: Effects of a Ligature on the Heart
A 30cm piece of thread was placed around the heart at the Atrioventricular groove (AV groove) and tied in a knot but left loose so as to not interrupt the normal function of the heart. The heart was allowed to beat for about 15 seconds with no pressure. After 15 seconds the knot was slowly tightened while taking care to stay on the AV groove while tightening. Data was observed and recorded.
Results
Procedure 1: The Heart Rate
This experiment was carried out as noted about in Procedure 1. The resting heart rate was established and used as a baseline value from which to compare all future deviations. While data could
Table 5. The effects of Atropine measured by the ventricle of the frog’s heart by amplitude, period, and BPMs.
Then using a disposable pipette we placed two drops of room temperature water (21 degrees) on top of the Daphnia. Then placing it careful under the microscope with a for 15 seconds using a tally counter and clicked away how many heart beats we observed and did this three times for three trials, in between the times would give the daphnia a two minute recovery period. We then would process the trials information and calculate an average. After the information calculated we then multiplied our results by four to see the average heart beats per minute with room temperature water. We gave the daphnia five minute to recover then went on to proceed with two drops of hot water (40 degrees celsius) placed on top of the Daphnia using the pipette. Again three trials for 15 second using the tally clicker following after a two minute break. The same followed for the cold water (0 degree celsius) placing two drops on top of the Daphnia administered by pipette. In between the transitional water temperature trials we then cleaned up the excess water before placing new drops of water by gently soaking up the water with kimwipes. After five minutes we tallied the heartbeats of the Daphnia before administering the epinephrine. Then again gently gave two doses of epinephrine using a new pipette. Then after we observed and tallying the heart beats before administering the epinephrine, three times again recording our results then averaging it. Then we placed two drops of the epinephrine on top of the daphnia, tallying the heartbeats and recording and calculating our trial results. Then after two minutes we observed and tallied the effects after the epinephrine had been used. Each trial again consisted of observation under the microscope, tallying and observing the behavior internally and externally of the
The range of normal resting systolic BP for the subjects in this experiment is 115-125 mmHg. Did systolic BP increase, decrease, or not change with exercise?
In order to complete this exercise, two different procedures were conducted; one measured the basal heart rate, and the other measured the drug-induced heart rate. A sample 's basal heart rate can be defined as the “resting” heart rate. This is when no drugs or altering substances are applied. In comparison, the drug-induced heart rate of a sample can be defined as the heart rate after the drug was administered to the surrounding environment. The four drugs tested on the Daphnia specimens were Acetylcholine, Caffeine,
Once the patient was correctly hooked up to the EKG the BIOPAC Student Lab Program was started. Lesson five is the one we used for this experiment and once it had been chosen we label it and started the experiment. There were four conditions we needed to measure; the first being lying down. The subject was lying down relaxing on the cot. We clicked record and let it run for 20 seconds. The data resembled the chart below. If it did not we would have had to repeat the steps until it did.
of atria and ventricle. Impulses not being transmitted from atria to the ventricle; no whole number relationship between atrial and ventricular contractions was demonstrated.
With this new invention a systematic way of interpreting an Electrocardiograph soon developed. The layout of the graph is as such: there are 4 columns which correspond to the leads; the first column – I, II, and III; the second column: aVR, AVL, aVF; the third V1-3; and the fourth V4-6. Each column is recorded simulation however they are not always displayed on the strip except for the last rhythm strip which occurs at the bottom of the tracing (lead II and V1).
An untrained 22-year-old male human subject was chosen. A PT-104 pulse plethysmograph was wrapped around his dominant (right) index finger. Connected through a IXTA data acquisition unit, heart rate was monitored on LabScribe. The recordings were measured with ten seconds of leeway at the beginning and end to allow baseline pulse recovery. Digital marks labeled the time interval of the described action. First the subject’s heart rate was measured during a resting phase for twenty seconds. He was encouraged to relax and remain inactive in order to confirm an accurate baseline reading. For the apneic condition, the subject repeated this
Three Daphnia magna were placed in a petri dish with a small amount of spring water. Each Daphnia magna was measured separately. The Daphnia magna was placed on a slide and their control heart rate was measured for 15 seconds under the microscope and multiplied by four. Then, it was placed in the epinephrine solution for two minutes.The Daphnia magna was placed back onto the slide with the spring water and the heart rate was measured again for 15 seconds and later multiplied by four to observe the effect of epinephrine on the heart rate. They were then placed into a different petri dish of spring water after their experimental heart rate was recorded. All the heart rate values were placed into a Microsoft Excel document. The controlled variables included the temperature of the water, the time subjected to the epinephrine solution, and the time used for measuring the control heart rate and the epinephrine heart
The authors then share their analysis on the changes of heart rate and GSR at the many different points throughout their study.
3. Describe the blood flow of the heart and the correct locations the blood enters and exits.
Now that the experiment has been tested, the results are in there comes the analysis part of the process. After I had determined my calculation I saw where my beats per minute were over a hundred; this consider me to be Tachycardia. Tachycardia refers to an abnormally fast resting heart rate. When examining what Tachycardia was and how it can be affected made me see that different scenarios will affect the beats per minute. Anxiety, caffeine, stress can all cause someone to have such a rapid heartbeat. I remember from when taking the echocardiogram that I was stressed
Carry out an experiment to measure the heart rate and ventilation rate before, during and after moderate exercise.
Blood is one of the most vital components of the human body. The blood carries many functions such as to supply oxygen to the bodies tissues, remove metabolic waste products, regulate our core temperature as well as fighting infection and foreign bodies (Glover, 1997). The cardiovascular system is composed of the heart and its vessels. The heart is an involuntary muscle which receives blood to the atrias, which is then pumped via the ventricles. The vessels are composed of three main types. Arteries, veins and capillaries; all which transport blood throughout the entirety of the body. The constant action of both the vessels and heart ensure that the body receives a continuous supply of blood, keeping us within our homeostatic limits.
The effects of heart rate on differing durations of exercise were studied in this experiment. For people, heart rate tends to increase as they perform physical exercises. The amount of beats per minute gradually increases as people perform physical activities. Heart rates taken before exercise are relatively low, and heart rates taken one minute after exercise increase significantly. Heart rates slowly begin to decrease after they are taken two minutes and three minutes after performing the step test, which is to be expected. The rates of intensity throughout exercise relates with changes in heart rate throughout the step test performed in the experiment (Karvonen 2012). The age of the participants affected the experiment, since the heart rate during physical exercise, in this case the step test, is affected by age (Tulppo 1998).