Experiment to Investigate Osmosis in Potatoes
The aim of this experiment is to investigate the movement of water in and out of plant cells. The cells chosen for study will be taken from potato tubers. Firstly I will explain what osmosis is. Osmosis is the passage of water from a region of high water concentration through a semi permeable membrane to a region of low water concentration. This definition contains three important statements:
a) It is the passage of water through a semi permeable membrane
b) It is the passage of water from a region of high water concentration
c) It is the passage of water to a region of low water concentration.
All the above statements are included in the definition, but define
certain
…show more content…
Transpiration pulls water up the plant stem but osmosis is the process whereby water is drawn into or out of cells and tissues. Osmosis is the flow of water by diffusion through a differentially permeable membrane from areas of high water concentration to regions of low water concentration. The diagram below illustrates this:
Water can freely penetrate all membrane. The cellulose cell wall does not act as a semi permeable membrane and will allow most substances that are dissolved in water to freely pass through it.
Whether water enters the cell by osmosis or not will depend on the balance between external and internal solute concentrations and the state of the cell. If the solutions on each side of the differentially permeable membrane are equally concentrated then there will be no net movement of water across the membrane. This is called an equilibrium state and the solutions are referred to as being isotonic. A solution that contains more solute particles than another, and is hence more concentrated, is referred to as being hypertonic. The less concentrated solution is hypotonic. This concentration of solute particles is usually described as a molarity.
Even if the solute concentration external to the cell is hypotonic to the vacuole contents the cell will not continue to take in water by osmosis for ever. The cellulose cell wall provides a rigid barrier to uncontrolled expansion. A cell that is full of water
In this experiment, we will investigate the effect of solute concentration on osmosis. A semi‐permeable membrane (dialysis tubing) and sucrose will create an osmotic environment similar to that of a cell. Using different concentrations of sucrose (which is unable to cross the membrane) will allow us to examine the net movement of water across the membrane.
_An experiment on the effect of surface area to volume ratio on the rate of osmosis of Solanum tuberosum L._
Water diffuses across the membrane from the region of lower solute concentration (higher free water concentration) to that of higher solute concentration (lower free water concentration) until the solute concentrations on both sides of the membrane are equal. The diffusion of free water across a selectively permeable membrane, whether artificial or cellular, is called osmosis. The movement of water across cell membranes and the balance of water between the cell and its environment are crucial to organisms. ("Diffusion And Osmosis - Difference And Comparison | Diffen"). A semi-permeable membrane known as the cell membrane surrounds the living cells of both plants and animals. Both solute concentration and membrane permeability are
The lab for this paper was conducted for the topic of osmosis, the movement of water from high to low concentration. Five artificial cells were created, each being filled with different concentrated solutions of sucrose. These artificial cells were placed in hypertonic, hypotonic, or isotonic solutions for a period of 90 min. Over time, the rate of osmosis was measured by calculating the weight of each artificial cell on given intervals (every 10 minutes). The resulting weights were recorded and the data was graphed. We then could draw conclusions on the lab.
Van’t Hoff’s Law suggests that the osmotic potential of a cell is proportional to the concentration of solute particles in a solution. The purpose of this experiment was to determine if there are any differences between the osmolalities, the no-weight-changes of osmolalities, and the water potentials of potato cores in different solutions of different solutes. The percent weight change of the potato cores was calculated through a “change in weight” method. The potato core’s weight was measured before and after they were put into different concentrations of a solute for 1.5 hours. In our experiment, there were no significant differences from the osmotic potentials of our results and the osmotic potentials of other scientists work. Ending with chi square values of 2.17 and 2.71, and p values of 0.256 and 0.337, concluding that there is no difference in water potentials of potato cores in different solutions of different solutes at varying concentrations.
All cells contain membranes that are selectively permeable, allowing certain things to pass into and leave out of the cell. The process in which molecules of a substance move from an area of high concentration to areas of low concentration is called Diffusion. Whereas Osmosis is the process in which water crosses membranes from regions of high water concentration to areas with low water concentration. While molecules in diffusion move down a concentration gradient, molecules during osmosis both move down a concentration gradient as well as across it. Both diffusion, and osmosis are types of passive transport, which do not require help.
Osmosis is defined as the tendency of water to flow through a semipermeable membrane to the side with a lower solute concentration. Water potential can be explained by solutes in a solution. The more positive a number is more likely it will lose water. Therefore should water potential be negative the cell the less likely it will lose water. In using potatoes the effects of the molarity of sucrose on the turgidity of plant cells. According to Clemson University, the average molarity of a White potato is between .24 M and .31 M when submerged in a sorbitol solution. This experiment was conducted with the purpose of explaining the relationship found between the mass in plants when put into varying concentrations of sucrose solutions. Should the potatoes be placed in a solution that contains 0.2M or .4M of sucrose solution it will be hypotonic and gain mass or if placed in .6M< it will be hypertonic and lose mass instead. Controlled Variables in this lab were: Composition of plastic cups, Brand of Russet Potatoes, Brand of Sweet Potatoes and the Temperature of the room. For independent variable that caused the results recorded it was the different Sucrose concentrations (0.0M, 0.2M, 0.4M, 0.6M, 0.8M, 1M). The dependent variable was the percentage change from the initial weighs to the final. The cup with .4 molarity was the closest to an isotonic solution and was used as the control group for the lab. Water potential is the free energy per mole of water. It is
Showing an example of diffusion with the water molecules equally back and forth the semi-permeable membrane of the potatoes and the saucer of water. The hypertonic solution of salt water has given an example of osmosis. The water molecules passed through the semi-permeable membrane out of the potatoes but weren’t able to get back in as easily due to the salt blocking the membranes passage. This left the potatoes in the salt water saucer feeling flexible and spongy almost leaving the potato a little
The Graphs below show the percent changes in mass for both the class averages and our group's averages:
Osmosis is the movement of water molecules from high concentration to low concentration through semipermeable membranes, caused by the difference in concentrations on the two sides of a membrane (Rbowen, L.). It occurs in both animals and plants cells. In human bodies, the process of osmosis is primarily found in the kidneys, in the glomerulus. In plants, osmosis is carried out everywhere within the cells of the plant (World Book, 1997). This can be shown by an experiment with potato and glucose/salt solution. The experiment requires putting a piece (or more) of potatoes into glucose or salt solution to see the result of osmosis (a hypertonic type of solution is mostly used as it would give the most prominent visual prove of
Osmosis is the passive movement of water from an area of low solute concentration to an area of high solute concentration, normally across a membrane which prevents the movement of solvent. This is a process by which materials may move into, out of, or within cells. Osmosis doesn’t depend on energy provided by living organisms but is affected by the properties of the cell membrane. The rate of osmosis is dependent on such factors as temperature, pressure, molecular properties such as size and mass, and the concentration gradient. In osmosis, the relationship between a solute’s concentration outside of cell and inside of a cell is described in terms of the tonicity of the solution outside of the cell. A cell is in a hypotonic solution when the solute is more concentrated inside the cell and therefore water moves into the cell. In this solution the cell swells as water enters, this may continue until it ruptures or hemolyzes. In the reverse condition, the cell is in a hypertonic solution
Osmosis is a special type of diffusion. It is the diffusion of water across a semipermeable membrane which is a membrane that is freely permeable to water but is not freely permeable to solutes, the water moves from a dilute solution to a more concentrated solution (Karp, 2010). Both diffusion and osmosis are passive transport, energy is not used in the transport. In osmosis water moves across a membrane toward the solution of greater concentration, because the concentration of water is lower there (Martini and Bartholomew., 2007).
Osmosis is a natural occurrence constantly happening within the cells of all living things. For osmosis to occur, water molecules must move across a semipermeable membrane from an area of low concentration to an are of high concentration. In order to understand osmosis, people must understand the different types of concentrations that can be present within solution. One of them is an Isotonic solution where the concentration of dissolved particles is equal to that of a cell’s. Another is a hypertonic solution where there is a higher concentration of dissolved particles then inside the cell. And lastly there is a hypotonic solution where there are less dissolved particles than inside the cell. As dissolved particles move to a region of lower concentration, water moves the opposite direction as a result of there being less water in the highly concentrated region. In this experiment, gummy bears were placed in salt water, sugar water, and tap water to find the measure of osmosis between the solution and gummy bear.
In this experiment, the osmotic concentration is found with potato slices placed in sucrose solutions. Osmosis in this model is the net movement of water between the potato cell and the sucrose solution. The movement of water is determined by the molarity of sucrose. As the molarity of sucrose increased then the concentration in the solution also increased. H2O will move through the cell membrane to areas of higher concentration in order to reach equilibrium. If cells are placed
Those three experiments showed that the way onion cells are dealing with the movement of water in and out of the cell is by osmosis. That Osmosis is the diffusion of water across a membrane into a solution having a greater solute concentration. The cell