Describe how Bacteria decode its genetic information to produce proteins?
Intro(10mins)
Bacteria belongs to a group of organism that lacks cell nucleus and membrane bound organells. This group of organisms are termed as prokaryotes. Prokaryotes follows the central dogma of molecular biology first proposed by Francis Crick in 1958 to synthesize proteins from mRNA through a process called translation and the mRNA is being synthesized from the DNA by another process called Transcription. Temperature, nutrient availibity are some key factors that start the process of synthesizing proteins in response to these key factors. Example. This paper will provide an explanation as to how bacteria decode the genetic information to produce
…show more content…
Elongation is terminated by a stop codon. Stop codon do not code for any amino acid.
Protein folding
The amino acid sequences derived from decoding the mRNA determines a protein's final conformation, helper proteins aid the newly formed polypeptide with its folding to achieve a proper functional shape. These molecular chaperones are essential as the cytoplasm is often filled with new polypeptide chains and thus these accumulation of polypeptide chain might accumulate together and fold into a non-function shape. Example of well studied chaperones from E.Coli are DnaK, DnaJ, GroEL and GroES. And GrpE.
Protein splicing
Some microbial proteins are spliced after translation. In protein splicing, a part of the polypeptide is removed before folding to its final shape.
Conclusion
Decoding its genetic information refers to the process of transcription while producing proteins refer to the process of translation.
Body 1(30mins)
DNA transcription.
MRNA Translation
Body 2
Different between
Conclusion(10mins)
Introduction.
Bacteria belongs to a group of organism that lacks cell nucleus and other membrane bound organells. This group of organisms are called "Prokaryotes" and they follow the central dogma of molecular biology first proposed by Francis Crick in 1958 for protein synthesize. Protein synthesize is how instruction written by the bacteria DNA are being copied into a temporary form called mRNA and these mRNA are sent to
Then the tRNA molecules link together and transfer the amino acid to the ribosome. An Anticodons pair with a codon takes the
their normal shape to an abnormal shape, however, the chemical composition of the protein remains
RNA processing: In eukaryotic cells, introns, non-coding regions of RNA, are removed and a tail and a cap is added to RNA to help its movement.
3) As a ribosome moves along the mRNA, the genetic message is translated into a protein with a specific amino acid sequence.
Transcription is the formation of an RNA strand from a DNA template within the nucleus of a cell. There are four nucleotides of DNA. These are adenine, cytosine, guanine and thymine. These nucleotides are transcribed to form messenger ribonucleic acid (mRNA) consisting of nucleotides made of adenine, cytosine, guanine and uracil. This transcription from DNA to mRNA happens by an RNA polymerase II. This newly created mRNA is read in the 5' to 3' direction in sets of 3. These sets are called codons. Each mRNA also has a cap and end. On the 5 prime side is a methylated guanine triphosphate and on the 3 prime is a poly A tail. Messenger RNA then moves to the cells cytoplasm and through the cells ribosomes for translation. Messenger RNA is matched to molecules of transfer RNA (tRNA) in the ribosomes to create amino acids. These amino acids subsequently form an amino acid chain. (Osuri, 2003) A visual representation of this can been viewed in figure 3.
After the DNA has been turned into mRNA a process called translation occurs and it turns the mRNA into tRNA.
Bacteria are small, unicellular prokaryotic microbes. They have many morphologies, which include rod-shaped, spherical, spirals, helices, stars, cubes, and clubs. Classification of bacteria begins with either aerobic (requiring diatomic oxygen for growth) or anaerobic (not requiring O2 for growth). Bacteria can simply be narrowed down to gram positive (organism that stains purple or blue by Gram stain) or gram negative (organism that stains red or pink by Gram stain). Many physical and nutritional factors influence bacterial growth. Physical factors include temperature (psychrophiles, thermophiles, and mesophiles), pH (neutrophiles, acidophiles, and alkalinophiles), O2 concentration (aerobic
A protein has multiple existing structures, these are the primary, secondary, tertiary and quaternary structures which occur progressively. A protein is essentially a sequence of amino acids which are bonded adjacently, and interact with one another in various ways depending on the R group that the amino acid contains. There are 20 different amino acids which are able to be arranged in any given order, thus giving rise to a potential 2.433x1018 (4.s.f) different combinations, and therefore interactions between the various amino acids.
Polypeptides’ creation is a long process that involves your DNA. A polypeptide is basically a protein that is bonded between amino acids. DNA triplets also involve in the creation of polypeptides. Inside the DNA the mRNA enters inside and copies the code. Since the DNA can’t leave the nucleus the mRNA is the messenger for the DNA. Which is called transcription since the mRNA copies the sequences and order of the bases. Then the DNA strands split up into two strands and an enzyme will encase it to be copied or let it be paired up with other bases. As the enzyme is replacing itself with nitrogen bases the second strand is being transferred out of the nucleus. The strands that are being transferred out of the nucleus can be paired up with tRNA
Proteins are primarily considered to have one primary function to serve its role in an organism, however studies have observed to have multiple functioning proteins known as moonlighting proteins (Khan et al. 2014). Moonlighting proteins along with primary functions, have secondary functions that are not related to the primary function and does not correlate to the primary or other functions (Khan et al. 2014). The multifunctional proteins play essential roles in carrying out biochemical functions which aids in the cell growth but are not caused by gene fusion and multiple RNA splice variants (Amblee et al. 2015). The discovery of moonlighting proteins was first discovered by Piatigorsky and Wistow while observing crystallins (Khan et al. 2014). Crystallins, are structural proteins that are found in the eye lens that exhibit enzymatic activity to make the lens itself (Khan et al. 2014). Crystallin has a primary function to help form the lens of the eye by acting as a structural protein (Amblee et al. 2015). Besides enzymatic activity, crystallin was observed in other mammals to have secondary functions such as metabolic functions which are helpful in prokaryotic (Khan et al 2014). Most moonlighting proteins are characterized as cytosolic enzymes and chaperons, or in other words helping proteins (Amblee et al 2015). The multifunctional proteins or moonlighting proteins can also be identified as receptors, channel proteins and ribosomal proteins (Khan et al. 2014). Due to the
Proteins are polymeric chains that are built from monomers called amino acids. All structural and functional properties of proteins derive from the chemical properties of the polypeptide chain. There are four levels of protein structural organization: primary, secondary, tertiary, and quaternary. Primary structure is defined as the linear sequence of amino acids in a polypeptide chain. The secondary structure refers to certain regular geometric figures of the chain. Tertiary structure results from long-range contacts within the chain. The quaternary structure is the organization of protein subunits, or two or more independent polypeptide chains.
The primary protein structure can be likened to a human chain in which each person is assumed to be an amino acid and their hands viewed as the carboxyl and amino groups. The person on one end of the chain, who has a free left hand, is assumed to be the free carboxyl group. The person on the other end, who has a free right hand, is assumed to be the free amino group. Everyone in this chain has a left hand linked to somebody’s right hand and a right hand linked to somebody else’s left hand forming peptide bonds. The heads and legs just like the side chains and hydrogens, do not take part in the linking.
Transcription is where DNA is transcribed into RNA which then can be pass to the ribosome’s to act as a template for protein synthesis. Before transcription can begin DNA must unwind and the two halves of the molecule much come apart so exposing the base sequence. This process begins when a region of a two DNA strands is unzipped by enzyme called RNA polymerase attaches to the DNA molecule at the imitation site.
Protein synthesis is one of the most fundamental biological processes. To start off, a protein is made in a ribosome. There are many cellular mechanisms involved with protein synthesis. Before the process of protein synthesis can be described, a person must know what proteins are made out of. There are four basic levels of protein organization. The first is primary structure, followed by secondary structure, then tertiary structure, and the last level is quaternary structure. Once someone understands the makeup of a protein, they can then begin to learn how elements can combine and go from genes to protein. There are two main processes that occur during protein synthesis, or peptide formation. One is transcription and
This is done by means of the aminoacyl attachment site (the site at which the amino acid is attached to the tRNA molecule). Each tRNA molecule, by means of their anticodons (a sequence of three exposed free bases complimentary to that of the codons on