The "flying car" is a ride at an amusement park which consists of a car having wheels that roll along a track mounted inside a rotating drum. By design the car cannot fall off the track, however motion of the car is developed by applying the car's brake, thereby gripping the car to the track and allowing it to move with a constant speed of the track, vt = 3 m/s. The rider applies the brake when going from B to A and then releases it at the top of the drum, A, so that the car coasts freely down along the track to B (0 = π rad). Neglect friction during the motion from A to B. The rider and car have a total mass of 390 kg and the center of mass of the car and rider moves along a circular path having a radius of R = 9.8 m. (Figure 1) Figure 1 of 1 Part A Determine the speed of the car at B. Express your answer to three significant figures and include the appropriate units. UB= Submit Part B NB = O Submit Value μà Determine the normal reaction which the drum exerts on the car at B. Express your answer to three significant figures and include the appropriate units. .0 Provide Feedback Request Answer μA Value Units Request Answer ? Units ? Ne:

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
The "flying car" is a ride at an amusement park which
consists of a car having wheels that roll along a track
mounted inside a rotating drum. By design the car cannot
fall off the track, however motion of the car is developed by
applying the car's brake, thereby gripping the car to the
track and allowing it to move with a constant speed of the
track, vt = 3 m/s. The rider applies the brake when going
from B to A and then releases it at the top of the drum, A,
so that the car coasts freely down along the track to B
(0 = π rad). Neglect friction during the motion from A to
B. The rider and car have a total mass of 390 kg and the
center of mass of the car and rider moves along a circular
path having a radius of R = 9.8 m. (Figure 1)
Figure
R
B
<
1 of 1
Part A
Determine the speed of the car at B.
Express your answer to three significant figures and include the
appropriate units.
VB =
Submit
Part B
NB =
Submit
0
o
μA
Value
Provide Feedback
Request Answer
Determine the normal reaction which the drum exerts on the car at B.
Express your answer to three significant figures and include the
appropriate units.
μÁ
Value
Units
Request Answer
?
Units
?
Next >
Transcribed Image Text:The "flying car" is a ride at an amusement park which consists of a car having wheels that roll along a track mounted inside a rotating drum. By design the car cannot fall off the track, however motion of the car is developed by applying the car's brake, thereby gripping the car to the track and allowing it to move with a constant speed of the track, vt = 3 m/s. The rider applies the brake when going from B to A and then releases it at the top of the drum, A, so that the car coasts freely down along the track to B (0 = π rad). Neglect friction during the motion from A to B. The rider and car have a total mass of 390 kg and the center of mass of the car and rider moves along a circular path having a radius of R = 9.8 m. (Figure 1) Figure R B < 1 of 1 Part A Determine the speed of the car at B. Express your answer to three significant figures and include the appropriate units. VB = Submit Part B NB = Submit 0 o μA Value Provide Feedback Request Answer Determine the normal reaction which the drum exerts on the car at B. Express your answer to three significant figures and include the appropriate units. μÁ Value Units Request Answer ? Units ? Next >
Expert Solution
steps

Step by step

Solved in 4 steps with 2 images

Blurred answer
Knowledge Booster
Dynamics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY