A water tower in an earthquake acts as a mass-spring system. Assume that the container on top is full and the water does not move around. The container then acts as the mass and the support acts as the spring, where the induced vibrations are horizontal. The container with water has a mass of m = 10, 000 kg. It takes a force of 1000 newtons to displace the container 1 meter. For simplicity assume no friction. When the earthquake hits the water tower is at rest (it is not moving). The earthquake induces an external force F(t)= mAω2 cos(ωt). a)  What is the natural frequency of the water tower? b)  If ω is not the natural frequency, find a formula for the maximal amplitude of the resulting oscillations of the water container (the maximal deviation from the rest position). The motion will be a high frequency wave modulated by a low frequency wave, so simply find the constant in front of the sines. c)  Suppose A= 1 and an earthquake with frequency 0.5 cycles per second comes. What is the amplitude of the oscillations? Suppose that if the water tower moves more than 1.5 meter from the rest position, the tower collapses. Will the tower collapse?

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question

A water tower in an earthquake acts as a mass-spring system. Assume that the container on top is full and the water does not move around. The container then acts as the mass and the support acts as the spring, where the induced vibrations are horizontal. The container with water has a mass of m = 10, 000 kg. It takes a force of 1000 newtons to displace the container 1 meter. For simplicity assume no friction. When the earthquake hits the water tower is at rest (it is not moving). The earthquake induces an external force F(t)= mAω2 cos(ωt).

  1. a)  What is the natural frequency of the water tower?

  2. b)  If ω is not the natural frequency, find a formula for the maximal amplitude of the resulting oscillations of the water container (the maximal deviation from the rest position). The motion will be a high frequency wave modulated by a low frequency wave, so simply find the constant in front of the sines.

  3. c)  Suppose A= 1 and an earthquake with frequency 0.5 cycles per second comes. What is the amplitude of the oscillations? Suppose that if the water tower moves more than 1.5 meter from the rest position, the tower collapses. Will the tower collapse?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Forced Undamped Vibrations
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY