A pump (Figure 4-07) takes water from a 200-mm suction pipe and delivers it to a 150-mm discharge pipe in which the velocity is 2.5 m/s. At A in the suction pipe, the pressure is -40 kPa. At B in the discharge pipe, which is 2.5 m above A, the pressure is 410 kPa. What horsepower would have to be applied by the pump if there were no frictional losses? 2. A pump (Figure 4-07) takes water from a 200-mm suction pipe and delivers it to a 150-mm discharge pipe in which the velocity is 3.6 m/s. The pressure is -35 kPa at A in the suction pipe. The 150 mm pipe discharges horizontally into air at C. To what height h above B can the water be raised if B is 1.8 m above A and 20 hp is delivered to the pump? Assume that the pump operates at 70 percent efficiency and that the frictional loss in the pipe between A and C is 3 m.

International Edition---engineering Mechanics: Statics, 4th Edition
4th Edition
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:Andrew Pytel And Jaan Kiusalaas
Chapter9: Moments And Products Of Inertia Of Areas
Section: Chapter Questions
Problem 9.22P
icon
Related questions
Question
1. A pump (Figure 4-07) takes water from a 200-mm suction pipe and delivers it to a 150-mm discharge pipe in which the velocity is 2.5 m/s. At A in the suction pipe, the pressure is -40 kPa. At B in the discharge pipe, which is 2.5 m above A, the pressure is 410 kPa. What horsepower would have to be applied by the pump if there were no frictional losses? 2. A pump (Figure 4-07) takes water from a 200-mm suction pipe and delivers it to a 150-mm discharge pipe in which the velocity is 3.6 m/s. The pressure is -35 kPa at A in the suction pipe. The 150 mm pipe discharges horizontally into air at C. To what height h above B can the water be raised if B is 1.8 m above A and 20 hp is delivered to the pump? Assume that the pump operates at 70 percent efficiency and that the frictional loss in the pipe between A and C is 3 m.
Figure 4-07
h
B
PUMP
MATHalino.com
A
MATHallno.com
n.com
Transcribed Image Text:Figure 4-07 h B PUMP MATHalino.com A MATHallno.com n.com
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 5 images

Blurred answer
Knowledge Booster
Applied Fluid Mechanics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
International Edition---engineering Mechanics: St…
International Edition---engineering Mechanics: St…
Mechanical Engineering
ISBN:
9781305501607
Author:
Andrew Pytel And Jaan Kiusalaas
Publisher:
CENGAGE L