6. An ideal gas expands isobarically from 3 atm from 400 to 600 ml. Heat then flows out of the gas at constant volume, and the pressure and temperature are allowed to decrease until the temperature reaches its original value. Calculate a) the total work done by the gas in the processes and b) the total heat flow to the gas.

University Physics Volume 2
18th Edition
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Chapter3: The First Law Of Thermodynamics
Section: Chapter Questions
Problem 76P: (a) An ideal gas expands adiabatically from a volume of 2.0103 m3 to 2.5103 m3. If the initial...
icon
Related questions
Question
100%

6. An ideal gas expands isobarically from 3 atm from 400 to 600 ml. Heat then flows out of the gas at constant volume, and the pressure and temperature are allowed to decrease until the temperature reaches its original value. Calculate a) the total work done by the gas in the processes and b) the total heat flow to the gas.

Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Similar questions
Recommended textbooks for you
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781938168000
Author:
Paul Peter Urone, Roger Hinrichs
Publisher:
OpenStax College