10. Wedge Hammer A B 45° -450 mm Fig. 3.20 Neglecting the small amount by which the hammer rises after passing through the vertical through A and assuming that the hammer fees not rebound, find the value of R TAR: 0.30 KNJ Fig. 3.20 shows a tilt hammer, hinged at 0, with its head A resting on top of the pile B. The hammer, including the arm OA, has a mass of 25 kg. Its centre of gravity G is 400 mm horizontally from O and its radius of gyration about an axis through G parallel to the axis of the pin O is 75 mm. The pile has a mass of 135 kg. The hammer is raised through 45° to the position shown in dotted lines, and released. On striking the pile, there is no rebound. Find the angular velocity of the hammer immediately before impact and the linear velocity of the pile immediately after impact. Neglect any impulsive resistance offered by the earth into which the pile is being driven. [Ans. 5.8 rad/s, 0.343 m/s]

International Edition---engineering Mechanics: Statics, 4th Edition
4th Edition
ISBN:9781305501607
Author:Andrew Pytel And Jaan Kiusalaas
Publisher:Andrew Pytel And Jaan Kiusalaas
Chapter7: Dry Friction
Section: Chapter Questions
Problem 7.72P
icon
Related questions
icon
Concept explainers
Question
100%
10.
Wedge
Hammer
A
B
45°
-450 mm
Fig. 3.20
Neglecting the small amount by which the hammer rises after passing through the vertical through
A and assuring that the hammer does not rebound, find the value of R
Fig. 3.20 shows a tilt hammer, hinged at 0, with its head A resting on top of the pile B. The
hammer, including the arm OA, has a mass of 25 kg. Its centre of gravity G is 400 mm horizontally
from O and its radius of gyration about an axis through G parallel to the axis of the pin O is 75 mm.
The pile has a mass of 135 kg. The hammer is raised through 45° to the position shown in dotted
lines, and released. On striking the pile, there is no rebound. Find the angular velocity of the
hammer immediately before impact and the linear velocity of the pile immediately after impact.
Neglect any impulsive resistance offered by the earth into which the pile is being driven.
[Ans. 5.8 rad/s, 0.343 m/s]
Transcribed Image Text:10. Wedge Hammer A B 45° -450 mm Fig. 3.20 Neglecting the small amount by which the hammer rises after passing through the vertical through A and assuring that the hammer does not rebound, find the value of R Fig. 3.20 shows a tilt hammer, hinged at 0, with its head A resting on top of the pile B. The hammer, including the arm OA, has a mass of 25 kg. Its centre of gravity G is 400 mm horizontally from O and its radius of gyration about an axis through G parallel to the axis of the pin O is 75 mm. The pile has a mass of 135 kg. The hammer is raised through 45° to the position shown in dotted lines, and released. On striking the pile, there is no rebound. Find the angular velocity of the hammer immediately before impact and the linear velocity of the pile immediately after impact. Neglect any impulsive resistance offered by the earth into which the pile is being driven. [Ans. 5.8 rad/s, 0.343 m/s]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Forming and Shaping
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
International Edition---engineering Mechanics: St…
International Edition---engineering Mechanics: St…
Mechanical Engineering
ISBN:
9781305501607
Author:
Andrew Pytel And Jaan Kiusalaas
Publisher:
CENGAGE L