When the ideal-gas reaction A +B=C+D has reached equilibrium, state whether or not each of the following relations must be true. Here n¡ is the number of moles of species i in equilibrium, P, is the partial pressure of i, and µ; is the chemical potential of i. Here a simple True or False answer is sufficient. (a) nc+np=na +ng (b) Pc+Pp =PA +Pg (c) na =ng

Physical Chemistry
2nd Edition
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Ball, David W. (david Warren), BAER, Tomas
Chapter5: Introduction To Chemical Equilibrium
Section: Chapter Questions
Problem 5.49E: 5.49. Consider the following equilibrium: What is the effect on the equilibrium of each of the...
icon
Related questions
Question
6.
When the ideal-gas reaction A+B=C+Dhas reached
equilibrium, state whether or not each of the following relations must be true. Here n¡ is
the number of moles of species i in equilibrium, P, is the partial pressure of i, and µ; is
the chemical potential of i. Here a simple True or False answer is sufficient.
(a) nc+np=nA +ng
(b) Pc+Pp=PA+PB
(c) na=ng
(d) nc=na
(e) If only A and B are present initially, then nc=np
(f) Ha + HB= Hc+ Hp no matter what the initial composition.
(g) If only A and B are present initially, then in equilibrium we must have nc # 0.
(h) The equilibrium constant Kp(T)= PĄPB/(PcPp).
(i) The value of –RT In Kp(T) = µE(T)+µ8(T)– H3(T) –- H§(T).
) The equilibrium constant is independent of the total pressure.
Transcribed Image Text:6. When the ideal-gas reaction A+B=C+Dhas reached equilibrium, state whether or not each of the following relations must be true. Here n¡ is the number of moles of species i in equilibrium, P, is the partial pressure of i, and µ; is the chemical potential of i. Here a simple True or False answer is sufficient. (a) nc+np=nA +ng (b) Pc+Pp=PA+PB (c) na=ng (d) nc=na (e) If only A and B are present initially, then nc=np (f) Ha + HB= Hc+ Hp no matter what the initial composition. (g) If only A and B are present initially, then in equilibrium we must have nc # 0. (h) The equilibrium constant Kp(T)= PĄPB/(PcPp). (i) The value of –RT In Kp(T) = µE(T)+µ8(T)– H3(T) –- H§(T). ) The equilibrium constant is independent of the total pressure.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Activities
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Physical Chemistry
Physical Chemistry
Chemistry
ISBN:
9781133958437
Author:
Ball, David W. (david Warren), BAER, Tomas
Publisher:
Wadsworth Cengage Learning,
Chemistry: The Molecular Science
Chemistry: The Molecular Science
Chemistry
ISBN:
9781285199047
Author:
John W. Moore, Conrad L. Stanitski
Publisher:
Cengage Learning
Chemistry & Chemical Reactivity
Chemistry & Chemical Reactivity
Chemistry
ISBN:
9781337399074
Author:
John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:
Cengage Learning
Chemistry & Chemical Reactivity
Chemistry & Chemical Reactivity
Chemistry
ISBN:
9781133949640
Author:
John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:
Cengage Learning
Fundamentals Of Analytical Chemistry
Fundamentals Of Analytical Chemistry
Chemistry
ISBN:
9781285640686
Author:
Skoog
Publisher:
Cengage