When doing numerical calculations involving temperature, you need to pay particular attention to the temperature scale you are using. In general, you should use the Kelvin scale (for which T = 0 represents absolute zero) in such calculations. This is because the standard thermodynamic equations (i.e., the ideal gas law and the formula for energy of a gas in terms of temperature) assume that zero degrees represents absolute zero. If you are given temperatures measured in units other than kelvins, convert them to kelvins before plugging them into these equations. (You may then want to convert back into the initial temperature unit to give your answer.) The average kinetic energy of the molecules of an ideal gas at 10°C has the value K10. At what temperature T₁ (in degrees Celsius) will the average kinetic energy of the same gas be twice this value, 2K10? Express the temperature to the nearest integer. ► View Available Hint(s) T₁ = Submit Part B ΠΫΠΙ ΑΣΦ B ? °C The molecules in an ideal gas at 10°C have a root-mean-square (rms) speed Urms. At what temperature T₂ (in degrees Celsius) will the molecules have twice the rms speed, 2vrms? Express the temperature to the nearest integer.

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
When doing numerical calculations involving temperature,
you need to pay particular attention to the temperature
scale you are using. In general, you should use the Kelvin
scale (for which T = 0 represents absolute zero) in such
calculations. This is because the standard thermodynamic
equations (i.e., the ideal gas law and the formula for energy
of a gas in terms of temperature) assume that zero
degrees represents absolute zero.
If you are given temperatures measured in units other than
kelvins, convert them to kelvins before plugging them into
these equations. (You may then want to convert back into
the initial temperature unit to give your answer.)
The average kinetic energy of the molecules of an ideal gas at 10°C has the value K10. At what temperature T₁ (in degrees Celsius) will the
average kinetic energy of the same gas be twice this value, 2K10?
Express the temperature to the nearest integer.
► View Available Hint(s)
T₁ =
Submit
Part B
IVE ΑΣΦ
Ć
?
°C
The molecules in an ideal gas at 10°C have a root-mean-square (rms) speed vrms. At what temperature T2 (in degrees Celsius) will the
molecules have twice the rms speed, 2vrms?
Express the temperature to the nearest integer.
Transcribed Image Text:When doing numerical calculations involving temperature, you need to pay particular attention to the temperature scale you are using. In general, you should use the Kelvin scale (for which T = 0 represents absolute zero) in such calculations. This is because the standard thermodynamic equations (i.e., the ideal gas law and the formula for energy of a gas in terms of temperature) assume that zero degrees represents absolute zero. If you are given temperatures measured in units other than kelvins, convert them to kelvins before plugging them into these equations. (You may then want to convert back into the initial temperature unit to give your answer.) The average kinetic energy of the molecules of an ideal gas at 10°C has the value K10. At what temperature T₁ (in degrees Celsius) will the average kinetic energy of the same gas be twice this value, 2K10? Express the temperature to the nearest integer. ► View Available Hint(s) T₁ = Submit Part B IVE ΑΣΦ Ć ? °C The molecules in an ideal gas at 10°C have a root-mean-square (rms) speed vrms. At what temperature T2 (in degrees Celsius) will the molecules have twice the rms speed, 2vrms? Express the temperature to the nearest integer.
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Thermodynamic Work done
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON