Two catalysts in a batch chemical process are being compared for their effect on the output of the process reaction. A sample of 11 batches was prepared using catalyst 1 and gave an average yield of 94 with a sample standard deviation of 4. A sample of 15 batches was prepared using catalyst 2 and gave an average yield of 89 and a sample standard deviation of 5. Find a 99% confidence interval for the difference between the population means, assuming that the populations are approximately normally distributed with equal variances. Click here to view page 1 of the table of critical values of the t-distribution. Click here to view page 2 of the table of critical values of the t-distribution. Let μ₁ be the population mean for catalyst 1 and let μ₂ be the population mean for catalyst 2. The confidence interval is ☐ <µ₁ - µ₂< | H21 (Round to two decimal places as needed.)

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question
100%

I need help with this please

Two catalysts in a batch chemical process are being compared for their effect on the output of the process reaction. A
sample of 11 batches was prepared using catalyst 1 and gave an average yield of 94 with a sample standard deviation
of 4. A sample of 15 batches was prepared using catalyst 2 and gave an average yield of 89 and a sample standard
deviation of 5. Find a 99% confidence interval for the difference between the population means, assuming that the
populations are approximately normally distributed with equal variances.
Click here to view page 1 of the table of critical values of the t-distribution.
Click here to view page 2 of the table of critical values of the t-distribution.
Let μ₁ be the population mean for catalyst 1 and let μ₂ be the population mean for catalyst 2.
The confidence interval is ] < H₁ = H₂ < [
(Round to two decimal places as needed.)
Transcribed Image Text:Two catalysts in a batch chemical process are being compared for their effect on the output of the process reaction. A sample of 11 batches was prepared using catalyst 1 and gave an average yield of 94 with a sample standard deviation of 4. A sample of 15 batches was prepared using catalyst 2 and gave an average yield of 89 and a sample standard deviation of 5. Find a 99% confidence interval for the difference between the population means, assuming that the populations are approximately normally distributed with equal variances. Click here to view page 1 of the table of critical values of the t-distribution. Click here to view page 2 of the table of critical values of the t-distribution. Let μ₁ be the population mean for catalyst 1 and let μ₂ be the population mean for catalyst 2. The confidence interval is ] < H₁ = H₂ < [ (Round to two decimal places as needed.)
Critical Values of the t-Distribution
Critical Values of the t-Distribution
a
a
0.40
0.30
0.20
0.15
0.10
0.05
0.025
0.02
0.015
0.01
0.0075
0.005
0.0025
0.0005
1
0.325
0.727
1.376
1.963
3.078
6.314
12.706
1
15.894
21.205
31.821
42.433
63.656
127.321
636.578
2
0.289
0.617
1.061
1.386
1.886
2.920
4.303
2
4.849
5.643
6.965
8.073
9.925
14.089
31.600
3
0.277
0.584
0.978
1.250
1.638
2.353
3.182
3
3.482
3.896
4.541
5.047
5.841
7.453
12.924
4
0.271
0.569
0.941
1.190
1.533
2.132
2.776
4
2.999
3.298
3.747
4.088
4.604
5.598
8.610
5
0.267
0.559
0.920
1.156
1.476
2.015
2.571
5
2.757
3.003
3.365
3.634
4.032
4.773
6.869
в
0.265
0.553
0.906
1.134
1.440
1.943
2.447
6
2.612
2.829
3.143
3.372
3.707
4.317
5.959
7
0.263
0.549
0.896
1.119
1.415
1.895
2.365
7
2.517
2.715
2.998
3.203
3.499
4.029
5.408
8
0.262
0.546
0.889
1.108
1.397
1.860
2.306
8
2.449
2.634
2.896
3.085
3.355
3.833
5.041
9
0.261
0.543
0.883
1.100
1.383
1.833
2.262
9
2.398
2.574
2.821
2.998
3.250
3.690
4.781
10
0.260
0.542
0.879
1.093
1.372
1.812
2.228
10
2.359
2.527
2.764
2.932
3.169
3.581
4.587
11
0.260
0.540
0.876
1.088
1.363
1.796
2.201
11
2.328
2.491
2.718
2.879
3.106
3.497
4.437
12
0.259
0.539
0.873
1.083
1.356
1.782
2.179
12
2.303
2.461
2.681
2.836
3.055
3.428
4.318
13
0.259
0.538
0.870
1.079
1.350
1.771
2.160
13
2.282
2.436
2.650
2.801
3.012
3.372
4.221
14
0.258
0.537
0.868
1.076
1.345
1.761
2.145
14
2.264
2.415
2.624
2.771
2.977
3.326
4.140
15
0.258
0.536
0.866
1.074
1.341
1.753
2.131
15
2.249
2.397
2.602
2.746
2.947
3.286
4.073
16
0.258
0.535
0.865
1.071
1.337
1.746
2.120
16
2.235
2.382
2.583
2.724
2.921
3.252
4.015
17
0.257
0.534
0.863
1.069
1.333
1.740
2.110
17
2.224
2.368
2.567
2.706
2.898
3.222
3.965
18
0.257
0.534
0.862
1.067
1.330
1.734
2.101
18
2.214
2.356
2.552
2.689
2.878
3.197
3.922
19
0.257
0.533
0.861
1.066
1.328
1.729
2.093
2.205
2.346
2.539
2.674
2.861
3.174
3.883
20
0.257
0.533
0.860
1.064
1.325
1.725
2.086
20
2.197
2.336
2.528
2.661
2.845
3.153
3.850
21
0.257
0.532
0.859
1.063
1.323
1.721
2.080
21
2.189
2.328
2.518
2.649
2.831
3.135
3.819
22
0.256
0.532
0.858
1.061
1.321
1.717
2.074
22
2.183
2.320
2.508
2.639
2.819
3.119
3.792
23
0.256
0.532
0.858
1.060
1.319
1.714
2.069
23
2.177
2.313
2.500
2.629
2.807
3.104
3.768
24
0.256
0.531
0.857
1.059
1.318
1.711
2.064
24
2.172
2.307
2.492
2.620
2.797
3.091
3.745
25
0.256
0.531
0.856
1.058
1.316
1.708
2.060
25
2.167
2.301
2.485
2.612
2.787
3.078
3.725
26
0.256
0.531
0.856
1.058
1.315
1.706
2.056
27
0.256
0.531
0.855
1.057
1.314
1.703
2.052
28
0.256
0.530
0.855
1.056
1.313
1.701
2.048
-
29
0.256
0.530
0.854
1.055
1.311
1.699
2.045
30
0.256
0.530
0.854
1.055
1.310
1.697
2.042
40
0.255
0.529
0.851
1.050
1.303
1.684
2.021
60
0.254
0.527
0.848
1.045
1.296
1.671
2.000
120
0.254
0.526
0.845
1.041
1.289
1.658
1.980
8"
0.253
0.524
0.842
1.036
1.282
1.645
1.960
e
0.40
0.30
0.20
0.15
0.10
- <>
120
888 988
26
2.162
2.296
2.479
2.605
2.779
3.067
3.707
27
2.158
2.291
2.473
2.598
2.771
3.057
3.689
28
2.154
2.286
2.467
2.592
2.763
3.047
3.674
2.150
2.282
2.462
2.586
2.756
3.038
3.660
30
2.147
2.278
2.457
2.581
2.750
3.030
3.646
40
2.123
2.250
2.423
2.542
2.704
2.971
3.551
60
2.099
2.223
2.390
2.504
2.660
2.915
3.460
2.076
2.196
2.358
2.468
2.617
2.860
3.373
2.054
2.170
2.326
2.432
2.576
2.807
3.290
0.05
0.025
0.02
0.015
0.01
0.0075
0.005
0.0025
0.0005
a
A
a
C
Transcribed Image Text:Critical Values of the t-Distribution Critical Values of the t-Distribution a a 0.40 0.30 0.20 0.15 0.10 0.05 0.025 0.02 0.015 0.01 0.0075 0.005 0.0025 0.0005 1 0.325 0.727 1.376 1.963 3.078 6.314 12.706 1 15.894 21.205 31.821 42.433 63.656 127.321 636.578 2 0.289 0.617 1.061 1.386 1.886 2.920 4.303 2 4.849 5.643 6.965 8.073 9.925 14.089 31.600 3 0.277 0.584 0.978 1.250 1.638 2.353 3.182 3 3.482 3.896 4.541 5.047 5.841 7.453 12.924 4 0.271 0.569 0.941 1.190 1.533 2.132 2.776 4 2.999 3.298 3.747 4.088 4.604 5.598 8.610 5 0.267 0.559 0.920 1.156 1.476 2.015 2.571 5 2.757 3.003 3.365 3.634 4.032 4.773 6.869 в 0.265 0.553 0.906 1.134 1.440 1.943 2.447 6 2.612 2.829 3.143 3.372 3.707 4.317 5.959 7 0.263 0.549 0.896 1.119 1.415 1.895 2.365 7 2.517 2.715 2.998 3.203 3.499 4.029 5.408 8 0.262 0.546 0.889 1.108 1.397 1.860 2.306 8 2.449 2.634 2.896 3.085 3.355 3.833 5.041 9 0.261 0.543 0.883 1.100 1.383 1.833 2.262 9 2.398 2.574 2.821 2.998 3.250 3.690 4.781 10 0.260 0.542 0.879 1.093 1.372 1.812 2.228 10 2.359 2.527 2.764 2.932 3.169 3.581 4.587 11 0.260 0.540 0.876 1.088 1.363 1.796 2.201 11 2.328 2.491 2.718 2.879 3.106 3.497 4.437 12 0.259 0.539 0.873 1.083 1.356 1.782 2.179 12 2.303 2.461 2.681 2.836 3.055 3.428 4.318 13 0.259 0.538 0.870 1.079 1.350 1.771 2.160 13 2.282 2.436 2.650 2.801 3.012 3.372 4.221 14 0.258 0.537 0.868 1.076 1.345 1.761 2.145 14 2.264 2.415 2.624 2.771 2.977 3.326 4.140 15 0.258 0.536 0.866 1.074 1.341 1.753 2.131 15 2.249 2.397 2.602 2.746 2.947 3.286 4.073 16 0.258 0.535 0.865 1.071 1.337 1.746 2.120 16 2.235 2.382 2.583 2.724 2.921 3.252 4.015 17 0.257 0.534 0.863 1.069 1.333 1.740 2.110 17 2.224 2.368 2.567 2.706 2.898 3.222 3.965 18 0.257 0.534 0.862 1.067 1.330 1.734 2.101 18 2.214 2.356 2.552 2.689 2.878 3.197 3.922 19 0.257 0.533 0.861 1.066 1.328 1.729 2.093 2.205 2.346 2.539 2.674 2.861 3.174 3.883 20 0.257 0.533 0.860 1.064 1.325 1.725 2.086 20 2.197 2.336 2.528 2.661 2.845 3.153 3.850 21 0.257 0.532 0.859 1.063 1.323 1.721 2.080 21 2.189 2.328 2.518 2.649 2.831 3.135 3.819 22 0.256 0.532 0.858 1.061 1.321 1.717 2.074 22 2.183 2.320 2.508 2.639 2.819 3.119 3.792 23 0.256 0.532 0.858 1.060 1.319 1.714 2.069 23 2.177 2.313 2.500 2.629 2.807 3.104 3.768 24 0.256 0.531 0.857 1.059 1.318 1.711 2.064 24 2.172 2.307 2.492 2.620 2.797 3.091 3.745 25 0.256 0.531 0.856 1.058 1.316 1.708 2.060 25 2.167 2.301 2.485 2.612 2.787 3.078 3.725 26 0.256 0.531 0.856 1.058 1.315 1.706 2.056 27 0.256 0.531 0.855 1.057 1.314 1.703 2.052 28 0.256 0.530 0.855 1.056 1.313 1.701 2.048 - 29 0.256 0.530 0.854 1.055 1.311 1.699 2.045 30 0.256 0.530 0.854 1.055 1.310 1.697 2.042 40 0.255 0.529 0.851 1.050 1.303 1.684 2.021 60 0.254 0.527 0.848 1.045 1.296 1.671 2.000 120 0.254 0.526 0.845 1.041 1.289 1.658 1.980 8" 0.253 0.524 0.842 1.036 1.282 1.645 1.960 e 0.40 0.30 0.20 0.15 0.10 - <> 120 888 988 26 2.162 2.296 2.479 2.605 2.779 3.067 3.707 27 2.158 2.291 2.473 2.598 2.771 3.057 3.689 28 2.154 2.286 2.467 2.592 2.763 3.047 3.674 2.150 2.282 2.462 2.586 2.756 3.038 3.660 30 2.147 2.278 2.457 2.581 2.750 3.030 3.646 40 2.123 2.250 2.423 2.542 2.704 2.971 3.551 60 2.099 2.223 2.390 2.504 2.660 2.915 3.460 2.076 2.196 2.358 2.468 2.617 2.860 3.373 2.054 2.170 2.326 2.432 2.576 2.807 3.290 0.05 0.025 0.02 0.015 0.01 0.0075 0.005 0.0025 0.0005 a A a C
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON