The two blocks are connected by a massless rope that passes through a pulley. Mass of first block is m1 = 1 kg, mass of the second block is m2= 5 kg. Mass of the pulley is M = 2 kg. Radius of the pulley is R= 10 cm. First block is placed on the 30 incline and the second block is hanging above the table at the height of 40 cm. Then, the system is released and the first block starts sliding up the incline and the second block starts falling toward the table. a) forces that apply to the pulley. b) pulley. Consider the pulley to be a disc and use disc's moment of inertia(/ = MR?/2) c) acceleration of the blocks. Draw the FBD for both blocks and draw separately the Write down equations of motion for the blocks and Using the equations from part (b) to calculate the Finally, find the velocity that the second block will d) acquire just before hitting the table using energy. m1 m2

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Question
The two blocks are connected by a massless rope that passes
through a pulley. Mass of first block is m1 = 1 kg, mass of the second
block is m2= 5 kg. Mass of the pulley is M = 2 kg. Radius of the pulley
is R= 10 cm. First block is placed on the 30 incline and the second
block is hanging above the table at the height of 40 cm. Then, the
system is released and the first block starts sliding up the incline and
the second block starts falling toward the table.
a)
forces that apply to the pulley.
b)
pulley. Consider the pulley to be a disc and use disc's moment of
inertia(/ = MR?/2)
c)
acceleration of the blocks.
Draw the FBD for both blocks and draw separately the
Write down equations of motion for the blocks and
Using the equations from part (b) to calculate the
Finally, find the velocity that the second block will
d)
acquire just before hitting the table using energy.
m1
m2
Transcribed Image Text:The two blocks are connected by a massless rope that passes through a pulley. Mass of first block is m1 = 1 kg, mass of the second block is m2= 5 kg. Mass of the pulley is M = 2 kg. Radius of the pulley is R= 10 cm. First block is placed on the 30 incline and the second block is hanging above the table at the height of 40 cm. Then, the system is released and the first block starts sliding up the incline and the second block starts falling toward the table. a) forces that apply to the pulley. b) pulley. Consider the pulley to be a disc and use disc's moment of inertia(/ = MR?/2) c) acceleration of the blocks. Draw the FBD for both blocks and draw separately the Write down equations of motion for the blocks and Using the equations from part (b) to calculate the Finally, find the velocity that the second block will d) acquire just before hitting the table using energy. m1 m2
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps with 9 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON