The crystalline lens of the human eye is a double-convex lens made of material having an index of refraction of 1.44 (although this varies). Its focal length in air is about 8.0 mm, which also varies. We shall assume hat the radii of curvature of its two surfaces have the same magnitude. a) Find the radii of curvature of this lens. b) If an object 16 cm tall is placed 30.0 cm from the eye lens, where would the lens focus it and how tall would the image be? Is this image real or virtual? Is it erect or inverted? Note: The results obtained here are not strictly accurate because the lens is embedded in fluids having efractive indexes different from that of air.)

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter26: Image Formation By Mirrors And Lenses
Section: Chapter Questions
Problem 33P: The left face of a biconvex lens has a radius of curvature of magnitude 12.0 cm, and the right face...
icon
Related questions
icon
Concept explainers
Question
The crystalline lens of the human eye is a double-convex lens made of material having an index of refraction
of 1.44 (although this varies). Its focal length in air is about 8.0 mm, which also varies. We shall assume
that the radii of curvature of its two surfaces have the same magnitude.
(a) Find the radii of curvature of this lens.
(b) If an object 16 cm tall is placed 30.0 cm from the eye lens, where would the lens focus it and how tall
would the image be? Is this image real or virtual? Is it erect or inverted?
(Note: The results obtained here are not strictly accurate because the lens is embedded in fluids having
refractive indexes different from that of air.)
Transcribed Image Text:The crystalline lens of the human eye is a double-convex lens made of material having an index of refraction of 1.44 (although this varies). Its focal length in air is about 8.0 mm, which also varies. We shall assume that the radii of curvature of its two surfaces have the same magnitude. (a) Find the radii of curvature of this lens. (b) If an object 16 cm tall is placed 30.0 cm from the eye lens, where would the lens focus it and how tall would the image be? Is this image real or virtual? Is it erect or inverted? (Note: The results obtained here are not strictly accurate because the lens is embedded in fluids having refractive indexes different from that of air.)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Lens
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
University Physics Volume 3
University Physics Volume 3
Physics
ISBN:
9781938168185
Author:
William Moebs, Jeff Sanny
Publisher:
OpenStax
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Glencoe Physics: Principles and Problems, Student…
Glencoe Physics: Principles and Problems, Student…
Physics
ISBN:
9780078807213
Author:
Paul W. Zitzewitz
Publisher:
Glencoe/McGraw-Hill