The car bridge in Figure Q20 can be modelled as a damped-spring oscillator system with mass M = 10000 kg, spring coefficient k = 50000 N-m-1 and damping constant c = 50000 N-s-m-1. Cars cross the bridge in a periodic manner such that the bridge experiences a vertical force F (N) expressed by F = mg sin(10t) where m = 1136 kg is the average mass of passing cars, g = 9.81 m-s-2 is the gravitational acceleration and t (s) is the time. Determine the maximum force magnitude transmitted to the foundation (see Figure Q20) during the steady-state oscillatory response of the system. Provide only the numerical value (in Newtons) to zero decimal places and do not include the units in the answer box. m www m M foundation Figure Q20: Vibrating car bridge.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
4
QUESTION 20
The car bridge in Figure Q20 can be modelled as a damped-spring oscillator system with mass M =
10000 kg, spring coefficient k = 50000 N-m-1 and damping constant c = 50000 N-s-m-1. Cars cross the
bridge in a periodic manner such that the bridge experiences a vertical force F (N) expressed by
F = mg sin(10t)
where m = 1136 kg is the average mass of passing cars, g = 9.81 m-s-2 is the gravitational acceleration
and t (s) is the time. Determine the maximum force magnitude transmitted to the foundation (see Figure
Q20) during the steady-state oscillatory response of the system. Provide only the numerical value (in
Newtons) to zero decimal places and do not include the units in the answer box.
E
m
M
foundation
Figure Q20: Vibrating car bridge.
Transcribed Image Text:4 QUESTION 20 The car bridge in Figure Q20 can be modelled as a damped-spring oscillator system with mass M = 10000 kg, spring coefficient k = 50000 N-m-1 and damping constant c = 50000 N-s-m-1. Cars cross the bridge in a periodic manner such that the bridge experiences a vertical force F (N) expressed by F = mg sin(10t) where m = 1136 kg is the average mass of passing cars, g = 9.81 m-s-2 is the gravitational acceleration and t (s) is the time. Determine the maximum force magnitude transmitted to the foundation (see Figure Q20) during the steady-state oscillatory response of the system. Provide only the numerical value (in Newtons) to zero decimal places and do not include the units in the answer box. E m M foundation Figure Q20: Vibrating car bridge.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Free Damped Vibrations
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY