Suppose you have an ice cream cone full of melted ice cream. The ice cream cone is in the shape of a right circular cone and is 0.5 feet tall with a width (diameter) of 0.25 feet at the top. You decide to drink the melted ice cream using a straw positioned at the top of the cone. How much work is necessary to drink all of the ice cream through the straw? Note that the approximate weight-density of melted ice cream is 64.05 pounds per cubic foot. Round your final answer to 3 decimal places.

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter7: Conservation Of Energy
Section: Chapter Questions
Problem 32P: Sewage at a certain pumping station is raised vertically by 5.49 m at the rate of 1 890 000 liters...
icon
Related questions
icon
Concept explainers
Topic Video
Question
Suppose you have an ice cream cone full of melted ice cream. The ice cream cone is in the shape of a right circular cone and is 0.5 feet tall with a width (diameter)
of 0.25 feet at the top. You decide to drink the melted ice cream using a straw positioned at the top of the cone. How much work is necessary to drink all of the
ice cream through the straw? Note that the approximate weight-density of melted ice cream is 64.05 pounds per cubic foot. Round your final answer to 3 decimal
places.
Transcribed Image Text:Suppose you have an ice cream cone full of melted ice cream. The ice cream cone is in the shape of a right circular cone and is 0.5 feet tall with a width (diameter) of 0.25 feet at the top. You decide to drink the melted ice cream using a straw positioned at the top of the cone. How much work is necessary to drink all of the ice cream through the straw? Note that the approximate weight-density of melted ice cream is 64.05 pounds per cubic foot. Round your final answer to 3 decimal places.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Kinetic energy
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning