Let R be the relation on the set of ordered pairs of positive integers such that ((a, b), (c, d)) E R if and only if ad = bc. Arrange the proof of the given statement in correct order to show that R is an equivalence relation. (Prove the given relation is reflexive first, and then symmetric and transitive.) Rank the options below. Hence, R is reflexive. If ((a, b), (c, d)) E E Rand ((c, d), (e, f)) E ER, then ad = bc and cf=de. Hence, Ris transitive. 60 7 3 Multiplying these equations gives acdf= bcde, and since all these numbers are nonzero, we have af = be, so ((a, b), (e, f)) E E R. 2 If ((a, b), (c, d)) E Є R then ad = bc, which also means that cb = da, so ((c, d), (a, b)) Є Є R. Hence, Ris symmetric. ((a, b), (a, b)) E E R because ab = ba. Since R is reflexive, symmetric, and transitive, it is an equivalence relation. 8 00 5 4

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Please help me with this question. I don't understand what I did wrong. Please kindly input the correct answer. I've been stuck on this for 1.5 hour now

Let R be the relation on the set of ordered pairs of positive integers such that ((a, b), (c, d)) E R if and only if ad = bc. Arrange the proof of the given statement in
correct order to show that R is an equivalence relation.
(Prove the given relation is reflexive first, and then symmetric and transitive.)
Rank the options below.
Hence, R is reflexive.
If ((a, b), (c, d)) E E Rand ((c, d), (e, f)) E ER, then ad = bc and cf=de.
Hence, Ris transitive.
60
7
3
Multiplying these equations gives acdf= bcde, and since all these numbers are nonzero, we have af = be, so ((a, b), (e, f)) E E R.
2
If ((a, b), (c, d)) E Є R then ad = bc, which also means that cb = da, so ((c, d), (a, b)) Є Є R.
Hence, Ris symmetric.
((a, b), (a, b)) E E R because ab = ba.
Since R is reflexive, symmetric, and transitive, it is an equivalence relation.
8
00
5
4
Transcribed Image Text:Let R be the relation on the set of ordered pairs of positive integers such that ((a, b), (c, d)) E R if and only if ad = bc. Arrange the proof of the given statement in correct order to show that R is an equivalence relation. (Prove the given relation is reflexive first, and then symmetric and transitive.) Rank the options below. Hence, R is reflexive. If ((a, b), (c, d)) E E Rand ((c, d), (e, f)) E ER, then ad = bc and cf=de. Hence, Ris transitive. 60 7 3 Multiplying these equations gives acdf= bcde, and since all these numbers are nonzero, we have af = be, so ((a, b), (e, f)) E E R. 2 If ((a, b), (c, d)) E Є R then ad = bc, which also means that cb = da, so ((c, d), (a, b)) Є Є R. Hence, Ris symmetric. ((a, b), (a, b)) E E R because ab = ba. Since R is reflexive, symmetric, and transitive, it is an equivalence relation. 8 00 5 4
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,