Systems Architecture
Systems Architecture
7th Edition
ISBN: 9781305080195
Author: Stephen D. Burd
Publisher: Cengage Learning
Bartleby Related Questions Icon

Related questions

Question

The knowledge distillation part is not very clear in the diagram. Please create two new diagrams by separating the two student models:

  1. First Diagram (Student A - Missing Values):

    • Clearly illustrate the student training process.

    • Show how knowledge distillation happens between the teacher and Student A.

    • Explain what the teacher teaches Student A (e.g., handling missing values) and how this teaching occurs (e.g., through logits, features, or attention).

  2. Second Diagram (Student B - Missing Labels):

    • Similarly, detail the training process for Student B.

    • Clarify how knowledge distillation works between the teacher and Student B.

    • Specify what the teacher teaches Student B (e.g., dealing with missing labels) and how the knowledge is transferred.

Since these are two distinct challenges (missing values vs. missing labels), they should not be combined in the same diagram. Instead, create two separate diagrams for clarity.

For reference, I will attach a second image (architecture of the proposed MSCATNN) as an example of the level of detail I expect for both cases (Student A and Student B).

Ds-
S₁
S2
S3
D₁
T₁
Encoder Output
(shifted right)
Output
Embedding
Input
Embedding
Attention
Muti-Head Add &
Norm
Feed
Forward
Add &
Norm
Muti-Head Add &
Attention Norm
Encoder #N
Muti-Head Add &
Attention
Norm
Feed
Forward
Add &
Norm
Decoder #N
Linear
T₁
S₁
T₁
S₁
S₂
S3
Linear
Кт VT
Qs Vs Ks
Cross Adaptive Layer
Sigmoid
Muti-Head
Cross Attention
Muti-Head
Attention
Add & Norm
Add & Norm
S₂
ypred
T₁
S₁
S₁
LMMD
LMSE
Feed Forward
Feed Forward
Ldistillation
S3
Ylabel
Add & Norm
Add & Norm
ΤΙ
S₁
Cross Adaptive Layer
|Ltotal = arg min (WaLdistillation+ WMLMMD + W,Lregression)
Fig. 6. Architecture of the proposed MSCATN.
expand button
Transcribed Image Text:Ds- S₁ S2 S3 D₁ T₁ Encoder Output (shifted right) Output Embedding Input Embedding Attention Muti-Head Add & Norm Feed Forward Add & Norm Muti-Head Add & Attention Norm Encoder #N Muti-Head Add & Attention Norm Feed Forward Add & Norm Decoder #N Linear T₁ S₁ T₁ S₁ S₂ S3 Linear Кт VT Qs Vs Ks Cross Adaptive Layer Sigmoid Muti-Head Cross Attention Muti-Head Attention Add & Norm Add & Norm S₂ ypred T₁ S₁ S₁ LMMD LMSE Feed Forward Feed Forward Ldistillation S3 Ylabel Add & Norm Add & Norm ΤΙ S₁ Cross Adaptive Layer |Ltotal = arg min (WaLdistillation+ WMLMMD + W,Lregression) Fig. 6. Architecture of the proposed MSCATN.
Inputs
Teacher Model (Pretrained)
Internal Features!!
Input C (Complete Data)
Transformer Encoder T
Teacher Prediction y_!
Input M (Missing Data)
Prediction Loss (y s'Avs
Total Loss A
Knowledge Distillation
(Student B)
Knowledge Distillation
(Student A)
Feature Alignment (Avs
Backpropagation
Total Loss B
Backpropagation
Prediction Loss (y "B vs
y_0)
Student ModeA (Handles
MissingInput)
Transformer Encoder S_A
Ground Truth RUL
RULLabels
Student A Prediction y "A
Student Model B (Handles
Missing Labels)
Transformer Encoder S B
Student B Prediction y_s^8
Final Output
Final RUL Prediction (y_s)
expand button
Transcribed Image Text:Inputs Teacher Model (Pretrained) Internal Features!! Input C (Complete Data) Transformer Encoder T Teacher Prediction y_! Input M (Missing Data) Prediction Loss (y s'Avs Total Loss A Knowledge Distillation (Student B) Knowledge Distillation (Student A) Feature Alignment (Avs Backpropagation Total Loss B Backpropagation Prediction Loss (y "B vs y_0) Student ModeA (Handles MissingInput) Transformer Encoder S_A Ground Truth RUL RULLabels Student A Prediction y "A Student Model B (Handles Missing Labels) Transformer Encoder S B Student B Prediction y_s^8 Final Output Final RUL Prediction (y_s)
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning
Text book image
Information Technology Project Management
Computer Science
ISBN:9781337101356
Author:Kathy Schwalbe
Publisher:Cengage Learning
Text book image
Np Ms Office 365/Excel 2016 I Ntermed
Computer Science
ISBN:9781337508841
Author:Carey
Publisher:Cengage
Text book image
Management Of Information Security
Computer Science
ISBN:9781337405713
Author:WHITMAN, Michael.
Publisher:Cengage Learning,
Text book image
Fundamentals of Information Systems
Computer Science
ISBN:9781305082168
Author:Ralph Stair, George Reynolds
Publisher:Cengage Learning
Text book image
Principles of Information Systems (MindTap Course...
Computer Science
ISBN:9781285867168
Author:Ralph Stair, George Reynolds
Publisher:Cengage Learning