In this Zener diode regulator, the source voltage varies from 6 V to 10 V. Assume that the load current varies between 2 mA and 33 mA, and that the diode is an ideal 3 V Zener diode. What is the largest allowable resistance that will ensure the load voltage remains constant with variations in load current and source voltage? Please enter your answer to 3 significant figures.

Electric Motor Control
10th Edition
ISBN:9781133702818
Author:Herman
Publisher:Herman
Chapter59: Motor Startup And Troubleshooting Basics
Section: Chapter Questions
Problem 12SQ: How is a solid-state diode tested? Explain.
icon
Related questions
Question
In this Zener diode regulator, the source
voltage varies from 6 V to 10 V. Assume
that the load current varies between 2
mA and 33 mA, and that the diode is an
ideal 3 V Zener diode. What is the largest
allowable resistance that will ensure the
load voltage remains constant with
variations in load current and source
voltage? Please enter your answer to 3
significant figures.
Transcribed Image Text:In this Zener diode regulator, the source voltage varies from 6 V to 10 V. Assume that the load current varies between 2 mA and 33 mA, and that the diode is an ideal 3 V Zener diode. What is the largest allowable resistance that will ensure the load voltage remains constant with variations in load current and source voltage? Please enter your answer to 3 significant figures.
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Three Phase Controlled and Uncontrolled Rectifiers
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Electric Motor Control
Electric Motor Control
Electrical Engineering
ISBN:
9781133702818
Author:
Herman
Publisher:
CENGAGE L
Electricity for Refrigeration, Heating, and Air C…
Electricity for Refrigeration, Heating, and Air C…
Mechanical Engineering
ISBN:
9781337399128
Author:
Russell E. Smith
Publisher:
Cengage Learning