Ice at 0 °C is placed in a Styrofoam cup containing 0.62 kg of lemonade at 32 °C. The specific heat capacity of lemonade is virtually the same as that of water; that is, c = 4180 J/(kg Cº). After the ice and lemonade reach an equilibrium temperature, some ice still remains. The latent heat of fusion for water is Lf = 3.35 x 105 J/ kg. Assume that the mass of the cup is so small that it absorbs a negligible amount of heat, and ignore any heat lost to the surroundings. Determine the mass of ice that has melted, in grams.

University Physics Volume 2
18th Edition
ISBN:9781938168161
Author:OpenStax
Publisher:OpenStax
Chapter1: Temperature And Heat
Section: Chapter Questions
Problem 95P: (a) What is the rate of heat conduction through the 3.00-cm-thick fur of a large animal having a I...
icon
Related questions
icon
Concept explainers
Question
Ice at 0 °C is placed in a Styrofoam cup
containing 0.62 kg of lemonade at 32 °C. The
specific heat capacity of lemonade is virtually
the same as that of water; that is, c = 4180
J/(kg C°). After the ice and lemonade reach
an equilibrium temperature, some ice still
remains. The latent heat of fusion for water is
Lf = 3.35 x 105 J/ kg. Assume that the mass
of the cup is so small that it absorbs a
negligible amount of heat, and ignore any
heat lost to the surroundings. Determine the
mass of ice that has melted, in grams.
Transcribed Image Text:Ice at 0 °C is placed in a Styrofoam cup containing 0.62 kg of lemonade at 32 °C. The specific heat capacity of lemonade is virtually the same as that of water; that is, c = 4180 J/(kg C°). After the ice and lemonade reach an equilibrium temperature, some ice still remains. The latent heat of fusion for water is Lf = 3.35 x 105 J/ kg. Assume that the mass of the cup is so small that it absorbs a negligible amount of heat, and ignore any heat lost to the surroundings. Determine the mass of ice that has melted, in grams.
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Energy transfer
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
University Physics Volume 2
University Physics Volume 2
Physics
ISBN:
9781938168161
Author:
OpenStax
Publisher:
OpenStax
Physics for Scientists and Engineers: Foundations…
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
College Physics
College Physics
Physics
ISBN:
9781285737027
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning