Find g of (a) f:Z→ N, (b) f:R → (0,1), f(x)=1/(x² +1); f(n) = n² + 1; g:N → Q, g(n) = g: (0, 1) → (0, 1), g(x) = 1 – x. (c) f:Q – {2} → Q*, f(x) = 1/(x – 2); g: Q* → Q*, g(x) = 1/x. g:[1, 00) → [0, 0) g(x) = Vr – I. g:Q – {3} → Q - {2}, (d) f:R → [1, 0), f(x) = x² + 1; (e) f:Q – {10/3} → Q – {3}, ƒ(x) = 3x – 7; 2a/(x – 3).

Database System Concepts
7th Edition
ISBN:9780078022159
Author:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Chapter1: Introduction
Section: Chapter Questions
Problem 1PE
icon
Related questions
Question
100%
### Problem Statement: 

**6. Find \( g \circ f \)**

For each part below, find the composition of functions \( g \circ f \) where \( g \circ f(x) = g(f(x)) \).

---

**(a)** \( f: \mathbb{Z} \to \mathbb{N}, \quad f(n) = n^2 + 1; \)  
\( g: \mathbb{N} \to \mathbb{Q}, \quad g(n) = \frac{1}{n}. \)

**(b)** \( f: \mathbb{R} \to (0, 1), \quad f(x) = \frac{1}{(x^2 + 1)}; \)  
\( g: (0, 1) \to (0, 1), \quad g(x) = 1 - x. \)

**(c)** \( f: \mathbb{Q} - \{2\} \to \mathbb{Q}^*, \quad f(x) = \frac{1}{(x - 2)}; \)  
\( g: \mathbb{Q}^* \to \mathbb{Q}^*, \quad g(x) = \frac{1}{x}. \)

**(d)** \( f: \mathbb{R} \to [1, \infty), \quad f(x) = x^2 + 1; \)  
\( g: [1, \infty) \to [0, \infty), \quad g(x) = \sqrt{x - 1}. \)

**(e)** \( f: \mathbb{Q} - \left\{\frac{10}{3}\right\} \to \mathbb{Q} - \{3\}, \quad f(x) = 3x - 7; \)  
\( g: \mathbb{Q} - \{3\} \to \mathbb{Q} - \{2\}, \quad g(x) = \frac{2x}{(x - 3)}. \)
Transcribed Image Text:### Problem Statement: **6. Find \( g \circ f \)** For each part below, find the composition of functions \( g \circ f \) where \( g \circ f(x) = g(f(x)) \). --- **(a)** \( f: \mathbb{Z} \to \mathbb{N}, \quad f(n) = n^2 + 1; \) \( g: \mathbb{N} \to \mathbb{Q}, \quad g(n) = \frac{1}{n}. \) **(b)** \( f: \mathbb{R} \to (0, 1), \quad f(x) = \frac{1}{(x^2 + 1)}; \) \( g: (0, 1) \to (0, 1), \quad g(x) = 1 - x. \) **(c)** \( f: \mathbb{Q} - \{2\} \to \mathbb{Q}^*, \quad f(x) = \frac{1}{(x - 2)}; \) \( g: \mathbb{Q}^* \to \mathbb{Q}^*, \quad g(x) = \frac{1}{x}. \) **(d)** \( f: \mathbb{R} \to [1, \infty), \quad f(x) = x^2 + 1; \) \( g: [1, \infty) \to [0, \infty), \quad g(x) = \sqrt{x - 1}. \) **(e)** \( f: \mathbb{Q} - \left\{\frac{10}{3}\right\} \to \mathbb{Q} - \{3\}, \quad f(x) = 3x - 7; \) \( g: \mathbb{Q} - \{3\} \to \mathbb{Q} - \{2\}, \quad g(x) = \frac{2x}{(x - 3)}. \)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Representation of Polynomial
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, computer-science and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Database System Concepts
Database System Concepts
Computer Science
ISBN:
9780078022159
Author:
Abraham Silberschatz Professor, Henry F. Korth, S. Sudarshan
Publisher:
McGraw-Hill Education
Starting Out with Python (4th Edition)
Starting Out with Python (4th Edition)
Computer Science
ISBN:
9780134444321
Author:
Tony Gaddis
Publisher:
PEARSON
Digital Fundamentals (11th Edition)
Digital Fundamentals (11th Edition)
Computer Science
ISBN:
9780132737968
Author:
Thomas L. Floyd
Publisher:
PEARSON
C How to Program (8th Edition)
C How to Program (8th Edition)
Computer Science
ISBN:
9780133976892
Author:
Paul J. Deitel, Harvey Deitel
Publisher:
PEARSON
Database Systems: Design, Implementation, & Manag…
Database Systems: Design, Implementation, & Manag…
Computer Science
ISBN:
9781337627900
Author:
Carlos Coronel, Steven Morris
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Computer Science
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education