Enrico Fermi (1901–1954) was a famous physicist who liked to pose what are now known as Fermi problems, in which several assumptions are made in order to make a seemingly impossible estimate. Probably the most famous example is the estimate of the number of piano tuners in Chicago using the approximate population of the city and assumptions about how many households have pianos, how often pianos need tuning, and how many hours a given tuner works in a year. Another famous example of a Fermi problem is "Caesar's last breath," which estimates that you, right now, are breathing some of the molecules exhaled by Julius Caesar just before he died. The assumptions made are: 1. The gas molecules from Caesar's last breath are now evenly dispersed in the atmosphere. 2. The atmosphere is 50 km thick, has an average temperature of 15 °C, and an average pressure of 0.20 atm. 3. The radius of the Earth is about 6400 km. 4. The volume of a single human breath is roughly 500 mL. Perform the calculations, reporting all answers to two significant figures. Calculate the total volume of the atmosphere. volume: m3 Calculate the total number of gas molecules in the atmosphere. molecules: Calculate the number of gas molecules in Caesar's last breath (37 °C and 1.0 atm). molecules: What fraction of all air molecules came from Caesar's last breath? fraction of molecules: About how many molecules from Caesar's last breath do you inhale each time you breathe? molecules:

Chemistry: The Molecular Science
5th Edition
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:John W. Moore, Conrad L. Stanitski
Chapter4: Energy And Chemical Reactions
Section: Chapter Questions
Problem 4.BCP
icon
Related questions
Question
Enrico Fermi (1901–1954) was a famous physicist who liked to pose what are now known as Fermi problems, in which
several assumptions are made in order to make a seemingly impossible estimate. Probably the most famous example is the
estimate of the number of piano tuners in Chicago using the approximate population of the city and assumptions about how
many households have pianos, how often pianos need tuning, and how many hours a given tuner works in a year.
Another famous example of a Fermi problem is "Caesar's last breath," which estimates that you, right now, are breathing some
of the molecules exhaled by Julius Caesar just before he died.
The assumptions made are:
1. The gas molecules from Caesar's last breath are now evenly dispersed in the atmosphere.
2. The atmosphere is 50 km thick, has an average temperature of 15 °C, and an average pressure of 0.20 atm.
3. The radius of the Earth is about 6400 km.
4. The volume of a single human breath is roughly 500 mL.
Perform the calculations, reporting all answers to two significant figures.
Calculate the total volume of the atmosphere.
volume:
m3
Calculate the total number of gas molecules in the atmosphere.
molecules:
Calculate the number of gas molecules in Caesar's last breath (37 °C and 1.0 atm).
molecules:
Transcribed Image Text:Enrico Fermi (1901–1954) was a famous physicist who liked to pose what are now known as Fermi problems, in which several assumptions are made in order to make a seemingly impossible estimate. Probably the most famous example is the estimate of the number of piano tuners in Chicago using the approximate population of the city and assumptions about how many households have pianos, how often pianos need tuning, and how many hours a given tuner works in a year. Another famous example of a Fermi problem is "Caesar's last breath," which estimates that you, right now, are breathing some of the molecules exhaled by Julius Caesar just before he died. The assumptions made are: 1. The gas molecules from Caesar's last breath are now evenly dispersed in the atmosphere. 2. The atmosphere is 50 km thick, has an average temperature of 15 °C, and an average pressure of 0.20 atm. 3. The radius of the Earth is about 6400 km. 4. The volume of a single human breath is roughly 500 mL. Perform the calculations, reporting all answers to two significant figures. Calculate the total volume of the atmosphere. volume: m3 Calculate the total number of gas molecules in the atmosphere. molecules: Calculate the number of gas molecules in Caesar's last breath (37 °C and 1.0 atm). molecules:
What fraction of all air molecules came from Caesar's last breath?
fraction of molecules:
About how many molecules from Caesar's last breath do you inhale each time you breathe?
molecules:
Transcribed Image Text:What fraction of all air molecules came from Caesar's last breath? fraction of molecules: About how many molecules from Caesar's last breath do you inhale each time you breathe? molecules:
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 6 steps with 5 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry: The Molecular Science
Chemistry: The Molecular Science
Chemistry
ISBN:
9781285199047
Author:
John W. Moore, Conrad L. Stanitski
Publisher:
Cengage Learning
Chemistry: An Atoms First Approach
Chemistry: An Atoms First Approach
Chemistry
ISBN:
9781305079243
Author:
Steven S. Zumdahl, Susan A. Zumdahl
Publisher:
Cengage Learning
General Chemistry - Standalone book (MindTap Cour…
General Chemistry - Standalone book (MindTap Cour…
Chemistry
ISBN:
9781305580343
Author:
Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:
Cengage Learning
World of Chemistry, 3rd edition
World of Chemistry, 3rd edition
Chemistry
ISBN:
9781133109655
Author:
Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCoste
Publisher:
Brooks / Cole / Cengage Learning
Chemistry In Focus
Chemistry In Focus
Chemistry
ISBN:
9781337399692
Author:
Tro, Nivaldo J.
Publisher:
Cengage Learning,