Programming Logic & Design Comprehensive
Programming Logic & Design Comprehensive
9th Edition
ISBN: 9781337669405
Author: FARRELL
Publisher: Cengage
Bartleby Related Questions Icon

Related questions

Question

Here are two diagrams. Make them very explicit, similar to Example Diagram 3 (the Architecture of MSCTNN).

graph LR subgraph Teacher_Model_B [Teacher Model (Pretrained)] Input_Teacher_B[Input C (Complete Data)] --> Teacher_Encoder_B[Transformer Encoder T] Teacher_Encoder_B --> Teacher_Prediction_B[Teacher Prediction y_T] Teacher_Encoder_B --> Teacher_Features_B[Internal Features F_T] end subgraph Student_B_Model [Student Model B (Handles Missing Labels)] Input_Student_B[Input C (Complete Data)] --> Student_B_Encoder[Transformer Encoder E_B] Student_B_Encoder --> Student_B_Prediction[Student B Prediction y_B] end subgraph Knowledge_Distillation_B [Knowledge Distillation (Student B)] Teacher_Prediction_B -- Logits Distillation Loss (L_logits_B) --> Total_Loss_B Teacher_Features_B -- Feature Alignment Loss (L_feature_B) --> Total_Loss_B Partial_Labels_B[Partial Labels y_p] -- Prediction Loss (L_pred_B) --> Total_Loss_B Total_Loss_B -- Backpropagation --> Student_B_Encoder end Teacher_Prediction_B -- Logits --> Logits_Distillation_B Teacher_Features_B -- Features --> Feature_Alignment_B Feature_Alignment_B -- Feature Alignment Loss (L_feature_B) --> Knowledge_Distillation_B Logits_Distillation_B -- Logits Distillation Loss (L_logits_B) --> Knowledge_Distillation_B Partial_Labels_B -- Available Labels --> Prediction_Loss_B Prediction_Loss_B -- Prediction Loss (L_pred_B) --> Knowledge_Distillation_B style Knowledge_Distillation_B fill:#aed,stroke:#333,stroke-width:2px style Total_Loss_B fill:#fff,stroke:#333,stroke-width:2px

 

graph LR subgraph Teacher Model (Pretrained) Input_Teacher[Input C (Complete Data)] --> Teacher_Encoder[Transformer Encoder T] Teacher_Encoder --> Teacher_Prediction[Teacher Prediction y_T] Teacher_Encoder --> Teacher_Features[Internal Features F_T] end subgraph Student_A_Model[Student Model A (Handles Missing Values)] Input_Student_A[Input M (Data with Missing Values)] --> Student_A_Encoder[Transformer Encoder E_A] Student_A_Encoder --> Student_A_Prediction[Student A Prediction y_A] Student_A_Encoder --> Student_A_Features[Student A Features F_A] end subgraph Knowledge_Distillation_A [Knowledge Distillation (Student A)] Teacher_Prediction -- Logits Distillation Loss (L_logits_A) --> Total_Loss_A Teacher_Features -- Feature Alignment Loss (L_feature_A) --> Total_Loss_A Ground_Truth_A[Ground Truth y_gt] -- Prediction Loss (L_pred_A) --> Total_Loss_A Total_Loss_A -- Backpropagation --> Student_A_Encoder end Teacher_Prediction -- Logits --> Logits_Distillation_A Teacher_Features -- Features --> Feature_Alignment_A Feature_Alignment_A -- Feature Alignment Loss (L_feature_A) --> Knowledge_Distillation_A Logits_Distillation_A -- Logits Distillation Loss (L_logits_A) --> Knowledge_Distillation_A Ground_Truth_A -- Labels --> Prediction_Loss_A Prediction_Loss_A -- Prediction Loss (L_pred_A) --> Knowledge_Distillation_A style Knowledge_Distillation_A fill:#ccf,stroke:#333,stroke-width:2px style Total_Loss_A fill:#fff,stroke:#333,stroke-width:2px

 

i have also attached the diagram code for both for you reference the two diagram must be very explicit 

please there were an answwer which did not satisfy my need

Ds-
S₁
S2
S3
D₁
T₁
Encoder Output
(shifted right)
Output
Embedding
Input
Embedding
Attention
Muti-Head Add &
Norm
Feed
Forward
Add &
Norm
Muti-Head Add &
Attention Norm
Encoder #N
Muti-Head Add &
Attention
Norm
Feed
Forward
Add &
Norm
Decoder #N
Linear
T₁
S₁
T₁
S₁
S₂
S3
Linear
Кт VT
Qs Vs Ks
Cross Adaptive Layer
Sigmoid
Muti-Head
Cross Attention
Muti-Head
Attention
Add & Norm
Add & Norm
S₂
ypred
T₁
S₁
S₁
LMMD
LMSE
Feed Forward
Feed Forward
Ldistillation
S3
Ylabel
Add & Norm
Add & Norm
ΤΙ
S₁
Cross Adaptive Layer
|Ltotal = arg min (WaLdistillation+ WMLMMD + W,Lregression)
Fig. 6. Architecture of the proposed MSCATN.
expand button
Transcribed Image Text:Ds- S₁ S2 S3 D₁ T₁ Encoder Output (shifted right) Output Embedding Input Embedding Attention Muti-Head Add & Norm Feed Forward Add & Norm Muti-Head Add & Attention Norm Encoder #N Muti-Head Add & Attention Norm Feed Forward Add & Norm Decoder #N Linear T₁ S₁ T₁ S₁ S₂ S3 Linear Кт VT Qs Vs Ks Cross Adaptive Layer Sigmoid Muti-Head Cross Attention Muti-Head Attention Add & Norm Add & Norm S₂ ypred T₁ S₁ S₁ LMMD LMSE Feed Forward Feed Forward Ldistillation S3 Ylabel Add & Norm Add & Norm ΤΙ S₁ Cross Adaptive Layer |Ltotal = arg min (WaLdistillation+ WMLMMD + W,Lregression) Fig. 6. Architecture of the proposed MSCATN.
Expert Solution
Check Mark
Knowledge Booster
Background pattern image
Recommended textbooks for you
Text book image
Programming Logic & Design Comprehensive
Computer Science
ISBN:9781337669405
Author:FARRELL
Publisher:Cengage
Text book image
Systems Architecture
Computer Science
ISBN:9781305080195
Author:Stephen D. Burd
Publisher:Cengage Learning
Text book image
Np Ms Office 365/Excel 2016 I Ntermed
Computer Science
ISBN:9781337508841
Author:Carey
Publisher:Cengage
Text book image
EBK JAVA PROGRAMMING
Computer Science
ISBN:9781337671385
Author:FARRELL
Publisher:CENGAGE LEARNING - CONSIGNMENT
Text book image
COMPREHENSIVE MICROSOFT OFFICE 365 EXCE
Computer Science
ISBN:9780357392676
Author:FREUND, Steven
Publisher:CENGAGE L
Text book image
C++ for Engineers and Scientists
Computer Science
ISBN:9781133187844
Author:Bronson, Gary J.
Publisher:Course Technology Ptr