Consider the octahedral complex [FeBr6] 4−. In water solution it has an absorption peak at 864 nm with a molar absorptivity (ε) of 3.6 L mol-1 cm-1 . (a) What is the energy (in wavenumbers, cm-1 ) of the absorption peak? Show all work. (b) How many valence d electrons does the metal center have? Justify your answer. (c) How many unpaired electrons per molecule would a magnetic susceptibility experiment predict? What would the S number be for this transition metal center? Justify your answers. (d) What electronic transition results from absorption of 864-nm light? (e) Calculate the ligand stabilization energy (in units of ∆o) and units of coulombic (Πc) energy. (f) How would the ligand field strengths (∆o) of [Fe(NH3)6] 2+ and [Fe(bipy)3] 2+ differ from that of [FeBr6] 4−? Why?
Atomic Structure
The basic structure of an atom is defined as the component-level of atomic structure of an atom. Precisely speaking an atom consists of three major subatomic particles which are protons, neutrons, and electrons. Many theories have been stated for explaining the structure of an atom.
Shape of the D Orbital
Shapes of orbitals are an approximate representation of boundaries in space for finding electrons occupied in that respective orbital. D orbitals are known to have a clover leaf shape or dumbbell inside where electrons can be found.
Consider the octahedral complex [FeBr6] 4−. In water solution it has an absorption peak at 864 nm with a molar absorptivity (ε) of 3.6 L mol-1 cm-1 .
(a) What is the energy (in wavenumbers, cm-1 ) of the absorption peak? Show all work.
(b) How many valence d electrons does the metal center have? Justify your answer.
(c) How many unpaired electrons per molecule would a magnetic susceptibility experiment predict? What would the S number be for this
(d) What electronic transition results from absorption of 864-nm light?
(e) Calculate the ligand stabilization energy (in units of ∆o) and units of coulombic (Πc) energy.
(f) How would the ligand field strengths (∆o) of [Fe(NH3)6] 2+ and [Fe(bipy)3] 2+ differ from that of [FeBr6] 4−? Why?
Trending now
This is a popular solution!
Step by step
Solved in 4 steps