c) This relationship is known as Graham's Law of Effusion. Since both gases are at te same temperature, they must have the same average kinetic energy ( mv2), where m is mass and v is velocity (like speed). Since both gases have the same average kinetic H H LL H H energy, you can state that % MLVL2 = v2. Multiplying both sides by 2 gives you m v 2 y2. Rearranging the equation to = m both masses on the same side of the equation will give you m/mH = V L2. In 3a and 3b, you probably noticed that the heavy gas particles took twice as long to diffuse as the light gas particles. This means that the light gas particles are moving twice as fast, VH/VL = ½. Therefore, V 2VL2 = 4. How many times heavier is the heavy gas compared to the light gas? d) If the light gas was Ne, what would be a reasonable identity for the heavy gas?

Chemistry & Chemical Reactivity
10th Edition
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Chapter10: Gases And Their Properties
Section: Chapter Questions
Problem 105IL: You have a gas, one of the three known phosphorus-fluorine compounds (PF3, PF3, and P2F4). To find...
icon
Related questions
Question
100%
c) This relationship is known as Graham's Law of Effusion. Since both gases are at te same temperature, they must
have the same average kinetic energy (½ mv²), where m is mass and v is velocity (like speed). Since both gases have
the same average kinetic
energy, you can state that ½ muvL2 = v ². Multiplying both sides by 2 gives you m v 2 y ². Rearranging the equation to get
H H
LL
H H
2 m
= m
both masses on the same side of the equation will give you mu/mH = V 2/VL2. In 3a and 3b, you probably noticed that the
heavy gas particles took twice as long to diffuse as the light gas particles. This means that the light gas particles are
moving twice as fast, VH/VL = ½. Therefore, V 2/VL2 = ¼. How many times heavier is the heavy gas compared to the
light gas?
d) If the light gas was Ne, what would be a reasonable identity for the heavy gas?
Transcribed Image Text:c) This relationship is known as Graham's Law of Effusion. Since both gases are at te same temperature, they must have the same average kinetic energy (½ mv²), where m is mass and v is velocity (like speed). Since both gases have the same average kinetic energy, you can state that ½ muvL2 = v ². Multiplying both sides by 2 gives you m v 2 y ². Rearranging the equation to get H H LL H H 2 m = m both masses on the same side of the equation will give you mu/mH = V 2/VL2. In 3a and 3b, you probably noticed that the heavy gas particles took twice as long to diffuse as the light gas particles. This means that the light gas particles are moving twice as fast, VH/VL = ½. Therefore, V 2/VL2 = ¼. How many times heavier is the heavy gas compared to the light gas? d) If the light gas was Ne, what would be a reasonable identity for the heavy gas?
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Mole Concept
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Chemistry & Chemical Reactivity
Chemistry & Chemical Reactivity
Chemistry
ISBN:
9781337399074
Author:
John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:
Cengage Learning
Chemistry & Chemical Reactivity
Chemistry & Chemical Reactivity
Chemistry
ISBN:
9781133949640
Author:
John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:
Cengage Learning
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Chemistry: The Molecular Science
Chemistry: The Molecular Science
Chemistry
ISBN:
9781285199047
Author:
John W. Moore, Conrad L. Stanitski
Publisher:
Cengage Learning
Introductory Chemistry: A Foundation
Introductory Chemistry: A Foundation
Chemistry
ISBN:
9781337399425
Author:
Steven S. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781133611097
Author:
Steven S. Zumdahl
Publisher:
Cengage Learning