At a proposed hydro-electric power plant site, the average elevation of the headwater is 600 m, the tailwater elevation is 480 m. Average annual water flow is determined to be equal to that volume flowing through a rectangular channel 4 m wide and0.5 m deep and average velocity of 5.5 m/sec. Assuming that the plant will operate 350 days per year, find the annual energy in KW-HR that the power site can develop if the hydraulic turbine that will be used has an efficiency 80% and generator efficiency of 92%. Consider a headwork loss of 4% of the available head. (76,854,851 KW-hr)

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question
At a proposed hydro-electric power plant site, the average elevation of the headwater is 600 m, the tailwater
elevation is 480 m. Average annual water flow is determined to be equal to that volume flowing through a
rectangular channel 4 m wide and0.5 m deep and average velocity of 5.5 m/sec. Assuming that the plant will
operate 350 days per year, find the annual energy in KW-HR that the power site can develop if the hydraulic
turbine that will be used has an efficiency 80% and generator efficiency of 92%. Consider a headwork loss
of 4% of the available head. (76,854,851 KW-hr)
Transcribed Image Text:At a proposed hydro-electric power plant site, the average elevation of the headwater is 600 m, the tailwater elevation is 480 m. Average annual water flow is determined to be equal to that volume flowing through a rectangular channel 4 m wide and0.5 m deep and average velocity of 5.5 m/sec. Assuming that the plant will operate 350 days per year, find the annual energy in KW-HR that the power site can develop if the hydraulic turbine that will be used has an efficiency 80% and generator efficiency of 92%. Consider a headwork loss of 4% of the available head. (76,854,851 KW-hr)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Analysis of Multiple Order System and Steady State Error
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,