A tank contains 225 L of water. A solution with a salt concentration of 0.4 kg/L is added at a rate of 5 L/min. The solution is kept mixed and is drained from the tank at a rate of 3 L/min. If y(t) is the amount of salt (in kilograms) after t minutes, show that y satisfies the differential equation dy dt = 2 −  3y 225 + 2t. Solve this equation and find the concentration after 20 minutes. (Round your answer to four decimal places.)

Calculus For The Life Sciences
2nd Edition
ISBN:9780321964038
Author:GREENWELL, Raymond N., RITCHEY, Nathan P., Lial, Margaret L.
Publisher:GREENWELL, Raymond N., RITCHEY, Nathan P., Lial, Margaret L.
Chapter11: Differential Equations
Section11.1: Solutions Of Elementary And Separable Differential Equations
Problem 59E: According to the solution in Exercise 58 of the differential equation for Newtons law of cooling,...
icon
Related questions
Question

A tank contains 225 L of water. A solution with a salt concentration of 0.4 kg/L is added at a rate of 5 L/min. The solution is kept mixed and is drained from the tank at a rate of 3 L/min. If

y(t)

is the amount of salt (in kilograms) after t minutes, show that y satisfies the differential equation

dy
dt
 = 2 − 
3y
225 + 2t
.

Solve this equation and find the concentration after 20 minutes. (Round your answer to four decimal places.)

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 21 images

Blurred answer
Recommended textbooks for you
Calculus For The Life Sciences
Calculus For The Life Sciences
Calculus
ISBN:
9780321964038
Author:
GREENWELL, Raymond N., RITCHEY, Nathan P., Lial, Margaret L.
Publisher:
Pearson Addison Wesley,
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning