A marketing expert for a pasta-making company believes that 50% of pasta lovers prefer lasagna. If 13 out of 20 pasta lovers choose lasagna over other pastas, what can be concluded about the expert's claim? Use a 0.10 level of significance. Click here to view the binomial probability sums table for n=17 and n=18. Click here to view the binomial probability sums table for n=19 and n=20. Let a success be a pasta lover that chooses lasagna over other pastas. Identify the null and alternative hypotheses. A. Ho: p=0.5 H₁: p 0.5 D. Ho: p>0.5 H₁: p=0.5 The test statistic is a binomial variable X with p = ☐ and n = [ (Type integers or decimals. Do not round.) ○ B. Ho: p = 0.5 H₁: p>0.5 ○ E. Ho: p=0.5 H₁: p<0.5 ○ C. Ho: p<0.5 H₁ p=0.5 ○ F. Ho: p# 0.5 H₁: p=0.5 Binomial Probability Sums b(x;n,p) 0 Binomial Probability Sums b(z;n,p) P 12 " 0.10 2 3 0.20 0.25 0.30 0.40 0.50 17 0 0.1668 0.0225 0.0075 0.0023 0.0002 0.0000 1 0.4818 0.1182 0.0501 0.0193 0.0021 0.0001 0.7618 0.3096 0.1637 0.0774 0.0123 0.0012 0.9174 0.5489 0.3530 0.2019 0.0464 0.0064 0.60 0.70 0.80 0.90 19 0 0.0000 0.10 0.20 0.25 0.1351 0.0144 0.0042 0.0011 0.0001 1 0.4203 0.0829 0.0310 0.0104 0.0008 0.0000 P 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.0001 2 0.7054 0.2369 0.1113 0.0462 0.0055 0.0004 0.0000 0.0005 0.0000 3 0.8850 0.4551 0.2631 0.1332 0.0230 0.0022 0.0001 4 0.9779 0.7582 0.5739 0.3887 0.1260 0.0245 0.0025 0.0001 5 0.9953 0.8943 0.7653 0.5968 0.2639 0.0717 6 0.9992 0.9623 0.8929 0.7752 10 11 12 13 14 15 16 17 0.4478 7 0.9999 0.9891 0.9598 0.8954 0.6405 8 1.0000 0.9974 0.9876 0.9597 0.8011 9 0.9995 0.9969 0.9873 0.9081 0.6855 0.9999 0.9994 0.9968 0.9652 0.8338 0.5522 1.0000 0.9999 0.9993 0.9894 0.9283 0.7361 0.4032 0.1057 0.0047 1.0000 0.9999 0.9975 0.9755 0.8740 0.6113 0.2418 0.0221 1.0000 0.9995 0.9936 0.9536 0.7981 0.4511 0.0826 0.9999 0.9988 0.9877 0.9226 0.6904 0.2382 1.0000 0.9999 0.9979 0.9807 0.8818 0.5182 1.0000 0.9998 0.9977 0.9775 0.8332 1.0000 1.0000 1.0000 1.0000 18 0 0.1501 0.0180 0.0056 0.0016 0.0001 0.0000 1 0.4503 0.0991 0.0395 0.0142 0.0013 0.0001 2 0.7338 0.2713 0.1353 0.0600 0.0082 0.0007 0.0000 3 0.9018 0.5010 0.3057 0.1646 0.0328 0.0038 0.0002 4 0.9718 0.7164 0.5187 0.3327 0.0942 0.0154 0.0013 0.0000 5 0.9936 0.8671 0.7175 0.5344 0.2088 0.0481 0.0058 0.0003 6 0.9988 0.9487 0.8610 0.7217 0.3743 0.1189 0.0203 0.0014 0.0000 7 0.9998 0.9837 0.9431 0.8593 0.5634 0.2403 0.0576 0.0061 0.0002 8 1.0000 0.9957 0.9807 0.9404 0.7368 0.4073 0.1347 0.0210 0.0009 9 0.9991 0.9946 0.9790 0.8653 0.5927 0.2632 0.0596 0.0043 0.0000 0.9998 0.9988 0.9939 0.9424 0.7597 0.4366 0.1407 0.0163 0.0002 1.0000 0.9998 0.9986 0.9797 0.8811 0.6257 0.2783 0.0513 0.0012 1.0000 0.9997 0.9942 0.9519 0.7912 0.4656 0.1329 0.0064 1.0000 0.9987 0.9846 0.9058 0.6673 0.2836 0.0282 0.9998 0.9962 0.9672 0.8354 0.4990 0.0982 1.0000 0.9993 0.9918 0.9400 0.7287 0.2662 0.9999 0.9987 0.9858 0.9009 0.5497 1.0000 0.9999 0.9984 0.9820 0.8499 1.0000 1.0000 1.0000 1.0000 0.0106 0.0007 0.0000 0.1662 0.0348 0.0032 0.0001 0.3145 0.0919 0.0127 0.0005 0.5000 0.1989 0.0403 0.0026 0.0000 0.3595 4 0.9648 0.6733 0.4654 0.2822 0.0696 0.0096 0.0006 0.0000 5 0.9914 0.8369 0.6678 0.4739 0.1629 0.0318 0.0031 0.0001 0.1046 0.0109 0.0001 0.2248 0.0377 0.0008 10 11 12 13 14 15 16 17 18 19 6 0.9983 0.9324 0.8251 0.6655 0.3081 0.0835 0.0116 0.0006 7 9 0.9997 0.9767 0.9225 0.8180 0.4878 0.1796 0.0352 0.0028 0.0000 8 1.0000 0.9933 0.9713 0.9161 0.6675 0.3238 0.0885 0.0105 0.0003 0.9984 0.9911 0.9674 0.8139 0.5000 0.1861 0.0326 0.0016 0.9997 0.9977 0.9895 0.9115 0.6762 0.3325 0.0839 0.0067 0.0000 1.0000 0.9995 0.9972 0.9648 0.8204 0.5122 0.1820 0.0233 0.0003 0.9999 0.9994 0.9884 0.9165 0.6919 0.3345 0.0676 0.0017 1.0000 0.9999 0.9969 0.9682 0.8371 0.5261 0.1631 0.0086 1.0000 0.9994 0.9904 0.9304 0.7178 0.3267 0.0352 0.9999 0.9978 0.9770 0.8668 0.5449 0.1150 1.0000 0.9996 0.9945 0.9538 0.7631 0.2946 1.0000 0.9992 0.9896 0.9171 0.5797 0.9999 0.9989 0.9856 0.8649 1.0000 1.0000 1.0000 1.0000 20 0 0.1216 0.0115 0.0032 0.0008 0.0000 1 0.3917 0.0692 0.0243 0.0076 0.0005 0.0000 2 0.6769 0.2061 0.0913 0.0355 0.0036 0.0002 10 11 12 13 14 15 | - | - 10 1 11 12 1 13 16 14 17 15 18 16 " 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 e 17 18 P с ¡A 19 3 0.8670 0.4114 0.2252 0.1071 0.0160 0.0013 0.0000 4 0.9568 0.6296 0.4148 0.2375 0.0510 0.0059 0.0003 5 0.9887 0.8042 0.6172 0.4164 0.1256 0.0207 0.0016 0.0000 6 0.9976 0.9133 0.7858 0.6080 0.2500 0.0577 0.0065 0.0003 7 0.9996 0.9679 0.8982 0.7723 0.4159 0.1316 0.0210 0.0013 0.0000 8 0.9999 0.9900 0.9591 0.8867 0.5956 0.2517 0.0565 0.0051 0.0001 1.0000 0.9974 0.9861 0.9520 0.7553 0.4119 0.1275 0.0171 0.0006 9 0.9994 0.9961 0.9829 0.8725 0.5881 0.2447 0.0480 0.0026 0.0000 0.9999 0.9991 0.9949 0.9435 0.7483 0.4044 0.1133 0.0100 0.0001 1.0000 0.9998 0.9987 0.9790 0.8684 0.5841 0.2277 0.0321 0.0004 1.0000 0.9997 0.9935 0.9423 0.7500 0.3920 0.0867 0.0024 1.0000 0.9984 0.9793 0.8744 0.5836 0.1958 0.0113 0.9997 0.9941 0.9490 0.7625 0.3704 0.0432 1.0000 0.9987 0.9840 0.8929 0.5886 0.1330 0.9998 0.9964 0.9645 0.7939 0.3231 1.0000 0.9995 0.9924 0.9308 0.6083 1.0000 0.9992 0.9885 0.8784 20 1.0000 1.0000 1.0000 nr 0.10 0.20 0.25 0.30 0.40 0.50 0.60 Dr 0.70 0.80 0.90 P
A marketing expert for a pasta-making company believes that 50% of pasta lovers prefer lasagna. If 13 out of 20 pasta lovers choose lasagna over other pastas, what can be concluded about the expert's claim? Use a 0.10 level of significance. Click here to view the binomial probability sums table for n=17 and n=18. Click here to view the binomial probability sums table for n=19 and n=20. Let a success be a pasta lover that chooses lasagna over other pastas. Identify the null and alternative hypotheses. A. Ho: p=0.5 H₁: p 0.5 D. Ho: p>0.5 H₁: p=0.5 The test statistic is a binomial variable X with p = ☐ and n = [ (Type integers or decimals. Do not round.) ○ B. Ho: p = 0.5 H₁: p>0.5 ○ E. Ho: p=0.5 H₁: p<0.5 ○ C. Ho: p<0.5 H₁ p=0.5 ○ F. Ho: p# 0.5 H₁: p=0.5 Binomial Probability Sums b(x;n,p) 0 Binomial Probability Sums b(z;n,p) P 12 " 0.10 2 3 0.20 0.25 0.30 0.40 0.50 17 0 0.1668 0.0225 0.0075 0.0023 0.0002 0.0000 1 0.4818 0.1182 0.0501 0.0193 0.0021 0.0001 0.7618 0.3096 0.1637 0.0774 0.0123 0.0012 0.9174 0.5489 0.3530 0.2019 0.0464 0.0064 0.60 0.70 0.80 0.90 19 0 0.0000 0.10 0.20 0.25 0.1351 0.0144 0.0042 0.0011 0.0001 1 0.4203 0.0829 0.0310 0.0104 0.0008 0.0000 P 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.0001 2 0.7054 0.2369 0.1113 0.0462 0.0055 0.0004 0.0000 0.0005 0.0000 3 0.8850 0.4551 0.2631 0.1332 0.0230 0.0022 0.0001 4 0.9779 0.7582 0.5739 0.3887 0.1260 0.0245 0.0025 0.0001 5 0.9953 0.8943 0.7653 0.5968 0.2639 0.0717 6 0.9992 0.9623 0.8929 0.7752 10 11 12 13 14 15 16 17 0.4478 7 0.9999 0.9891 0.9598 0.8954 0.6405 8 1.0000 0.9974 0.9876 0.9597 0.8011 9 0.9995 0.9969 0.9873 0.9081 0.6855 0.9999 0.9994 0.9968 0.9652 0.8338 0.5522 1.0000 0.9999 0.9993 0.9894 0.9283 0.7361 0.4032 0.1057 0.0047 1.0000 0.9999 0.9975 0.9755 0.8740 0.6113 0.2418 0.0221 1.0000 0.9995 0.9936 0.9536 0.7981 0.4511 0.0826 0.9999 0.9988 0.9877 0.9226 0.6904 0.2382 1.0000 0.9999 0.9979 0.9807 0.8818 0.5182 1.0000 0.9998 0.9977 0.9775 0.8332 1.0000 1.0000 1.0000 1.0000 18 0 0.1501 0.0180 0.0056 0.0016 0.0001 0.0000 1 0.4503 0.0991 0.0395 0.0142 0.0013 0.0001 2 0.7338 0.2713 0.1353 0.0600 0.0082 0.0007 0.0000 3 0.9018 0.5010 0.3057 0.1646 0.0328 0.0038 0.0002 4 0.9718 0.7164 0.5187 0.3327 0.0942 0.0154 0.0013 0.0000 5 0.9936 0.8671 0.7175 0.5344 0.2088 0.0481 0.0058 0.0003 6 0.9988 0.9487 0.8610 0.7217 0.3743 0.1189 0.0203 0.0014 0.0000 7 0.9998 0.9837 0.9431 0.8593 0.5634 0.2403 0.0576 0.0061 0.0002 8 1.0000 0.9957 0.9807 0.9404 0.7368 0.4073 0.1347 0.0210 0.0009 9 0.9991 0.9946 0.9790 0.8653 0.5927 0.2632 0.0596 0.0043 0.0000 0.9998 0.9988 0.9939 0.9424 0.7597 0.4366 0.1407 0.0163 0.0002 1.0000 0.9998 0.9986 0.9797 0.8811 0.6257 0.2783 0.0513 0.0012 1.0000 0.9997 0.9942 0.9519 0.7912 0.4656 0.1329 0.0064 1.0000 0.9987 0.9846 0.9058 0.6673 0.2836 0.0282 0.9998 0.9962 0.9672 0.8354 0.4990 0.0982 1.0000 0.9993 0.9918 0.9400 0.7287 0.2662 0.9999 0.9987 0.9858 0.9009 0.5497 1.0000 0.9999 0.9984 0.9820 0.8499 1.0000 1.0000 1.0000 1.0000 0.0106 0.0007 0.0000 0.1662 0.0348 0.0032 0.0001 0.3145 0.0919 0.0127 0.0005 0.5000 0.1989 0.0403 0.0026 0.0000 0.3595 4 0.9648 0.6733 0.4654 0.2822 0.0696 0.0096 0.0006 0.0000 5 0.9914 0.8369 0.6678 0.4739 0.1629 0.0318 0.0031 0.0001 0.1046 0.0109 0.0001 0.2248 0.0377 0.0008 10 11 12 13 14 15 16 17 18 19 6 0.9983 0.9324 0.8251 0.6655 0.3081 0.0835 0.0116 0.0006 7 9 0.9997 0.9767 0.9225 0.8180 0.4878 0.1796 0.0352 0.0028 0.0000 8 1.0000 0.9933 0.9713 0.9161 0.6675 0.3238 0.0885 0.0105 0.0003 0.9984 0.9911 0.9674 0.8139 0.5000 0.1861 0.0326 0.0016 0.9997 0.9977 0.9895 0.9115 0.6762 0.3325 0.0839 0.0067 0.0000 1.0000 0.9995 0.9972 0.9648 0.8204 0.5122 0.1820 0.0233 0.0003 0.9999 0.9994 0.9884 0.9165 0.6919 0.3345 0.0676 0.0017 1.0000 0.9999 0.9969 0.9682 0.8371 0.5261 0.1631 0.0086 1.0000 0.9994 0.9904 0.9304 0.7178 0.3267 0.0352 0.9999 0.9978 0.9770 0.8668 0.5449 0.1150 1.0000 0.9996 0.9945 0.9538 0.7631 0.2946 1.0000 0.9992 0.9896 0.9171 0.5797 0.9999 0.9989 0.9856 0.8649 1.0000 1.0000 1.0000 1.0000 20 0 0.1216 0.0115 0.0032 0.0008 0.0000 1 0.3917 0.0692 0.0243 0.0076 0.0005 0.0000 2 0.6769 0.2061 0.0913 0.0355 0.0036 0.0002 10 11 12 13 14 15 | - | - 10 1 11 12 1 13 16 14 17 15 18 16 " 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.80 0.90 e 17 18 P с ¡A 19 3 0.8670 0.4114 0.2252 0.1071 0.0160 0.0013 0.0000 4 0.9568 0.6296 0.4148 0.2375 0.0510 0.0059 0.0003 5 0.9887 0.8042 0.6172 0.4164 0.1256 0.0207 0.0016 0.0000 6 0.9976 0.9133 0.7858 0.6080 0.2500 0.0577 0.0065 0.0003 7 0.9996 0.9679 0.8982 0.7723 0.4159 0.1316 0.0210 0.0013 0.0000 8 0.9999 0.9900 0.9591 0.8867 0.5956 0.2517 0.0565 0.0051 0.0001 1.0000 0.9974 0.9861 0.9520 0.7553 0.4119 0.1275 0.0171 0.0006 9 0.9994 0.9961 0.9829 0.8725 0.5881 0.2447 0.0480 0.0026 0.0000 0.9999 0.9991 0.9949 0.9435 0.7483 0.4044 0.1133 0.0100 0.0001 1.0000 0.9998 0.9987 0.9790 0.8684 0.5841 0.2277 0.0321 0.0004 1.0000 0.9997 0.9935 0.9423 0.7500 0.3920 0.0867 0.0024 1.0000 0.9984 0.9793 0.8744 0.5836 0.1958 0.0113 0.9997 0.9941 0.9490 0.7625 0.3704 0.0432 1.0000 0.9987 0.9840 0.8929 0.5886 0.1330 0.9998 0.9964 0.9645 0.7939 0.3231 1.0000 0.9995 0.9924 0.9308 0.6083 1.0000 0.9992 0.9885 0.8784 20 1.0000 1.0000 1.0000 nr 0.10 0.20 0.25 0.30 0.40 0.50 0.60 Dr 0.70 0.80 0.90 P
A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
Related questions
Question
AI-Generated Solution
AI-generated content may present inaccurate or offensive content that does not represent bartleby’s views.
Unlock instant AI solutions
Tap the button
to generate a solution
Recommended textbooks for you
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON