7. The rotor resistances per phase of a 4-pole, 50-Hz, 3-phase induction motor are 0.024 ohm and 0.12 ohm respectively. Find the speed at maximum torque. Also find the value of the additional rotor resistance per phase required to develop 80% of maximum torque at starting. [1200 r.p.m. 0.036 2] (Elect. Machines, A.M.I.E. Sec. B, 1990) 8. The resistance and reactance per pbase of the rotor of a 3-phase induction motor are 0.6 ohm and

Delmar's Standard Textbook Of Electricity
7th Edition
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Stephen L. Herman
Chapter35: Harmonics 916
Section: Chapter Questions
Problem 3RQ: Would a positive-rotating harmonic or a negative-rotating harmonic be more harmful to an induction...
icon
Related questions
Question
7.
The rotor resistances per phase of a 4-pole, 50-Hz, 3-phase induction motor are 0.024 ohm and 0.12
ohm respectively. Find the speed at maximum torque. Also find the value of the additional rotor
resistance per phase required to develop 80% of maximum torque at starting.
[1200 r.p.m. 0.036 Q] (Elect. Machines, A.M.I.E. Sec. B, 1990)
8.
The resistance and reactance per phase of the rotor of a 3-phase induction motor are 0.6 ohm and
5 ohms respectively. The induction motor has a star-connected rotor and when the stator is
connected to a supply of normal voltage, the induced e.m.f. between the slip rings at standstill is 80
V. Calculate the current in each phase and the power factor at starting when (i) the slip-rings are
shorted, (ii) slip-rings are connected to a star-connected resistance of 4 ohm per phase.
[(i) 9.17 amp, 0.1194 lag (i) 6.8 amp, 0.6765 lag||Rajiv Gandhi Technical University, Bhopal, 2000]
Transcribed Image Text:7. The rotor resistances per phase of a 4-pole, 50-Hz, 3-phase induction motor are 0.024 ohm and 0.12 ohm respectively. Find the speed at maximum torque. Also find the value of the additional rotor resistance per phase required to develop 80% of maximum torque at starting. [1200 r.p.m. 0.036 Q] (Elect. Machines, A.M.I.E. Sec. B, 1990) 8. The resistance and reactance per phase of the rotor of a 3-phase induction motor are 0.6 ohm and 5 ohms respectively. The induction motor has a star-connected rotor and when the stator is connected to a supply of normal voltage, the induced e.m.f. between the slip rings at standstill is 80 V. Calculate the current in each phase and the power factor at starting when (i) the slip-rings are shorted, (ii) slip-rings are connected to a star-connected resistance of 4 ohm per phase. [(i) 9.17 amp, 0.1194 lag (i) 6.8 amp, 0.6765 lag||Rajiv Gandhi Technical University, Bhopal, 2000]
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Three phase Induction Motor
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning