7. Consider an element that conducts heat as shown below with length L, cross sectional area A, and heat conductance k. Nodes 1 and 2 have temperatures of T, and T2. The heat flux q due to conduction is given by: dT - ~ – k=- dx ΔΤ q = - k Ax This relationship is analogous to Hooke's Law from the prior problem. Heat transfer by conduction Qc is given by: Oc = qA Use equilibrium requirements to solve for the heat transfer by conduction Qci and Qcz at the nodes and use these equations to derive a "conductance matrix" (or the stiffness matrix due to conduction which is the analog of the stiffness matrix) for this heat conducting element. For the sign convention, consider heat flux positive when heat flows into the element and negative when it flows out of the element. Show your full matrix equation and the conductance matrix. Oci T T2 Oc2

Principles of Heat Transfer (Activate Learning with these NEW titles from Engineering!)
8th Edition
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Kreith, Frank; Manglik, Raj M.
Chapter4: Numerical Analysis Of Heat Conduction
Section: Chapter Questions
Problem 4.52P
icon
Related questions
Question
7. Consider an element that conducts heat as shown below with length L, cross sectional area
A, and heat conductance k. Nodes 1 and 2 have temperatures of T, and T2. The heat flux
q due to conduction is given by:
dT
ΔΤ
q = - k
dx
Ax
This relationship is analogous to Hooke's Law from the prior problem. Heat transfer by
conduction Qc is given by:
Oc = qA
Use equilibrium requirements to solve for the heat transfer by conduction Qci and Qcz at
the nodes and use these equations to derive a "conductance matrix" (or the stiffness matrix
due to conduction which is the analog of the stiffness matrix) for this heat conducting
element. For the sign convention, consider heat flux positive when heat flows into the
element and negative when it flows out of the element. Show your full matrix equation
and the conductance matrix.
Oci
T
T2
Oc2
2
Transcribed Image Text:7. Consider an element that conducts heat as shown below with length L, cross sectional area A, and heat conductance k. Nodes 1 and 2 have temperatures of T, and T2. The heat flux q due to conduction is given by: dT ΔΤ q = - k dx Ax This relationship is analogous to Hooke's Law from the prior problem. Heat transfer by conduction Qc is given by: Oc = qA Use equilibrium requirements to solve for the heat transfer by conduction Qci and Qcz at the nodes and use these equations to derive a "conductance matrix" (or the stiffness matrix due to conduction which is the analog of the stiffness matrix) for this heat conducting element. For the sign convention, consider heat flux positive when heat flows into the element and negative when it flows out of the element. Show your full matrix equation and the conductance matrix. Oci T T2 Oc2 2
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Conduction
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Heat Transfer (Activate Learning wi…
Principles of Heat Transfer (Activate Learning wi…
Mechanical Engineering
ISBN:
9781305387102
Author:
Kreith, Frank; Manglik, Raj M.
Publisher:
Cengage Learning