60. When tin comes in contact with the oxygen in the air, tin(IV) oxide, SnO2, is formed. Sn(s) + O2(g) SNO2(s) A piece of tin foil, 8.25 cm × 21.5 cm × 0.600 mm (d = 7.28 g/cm³), is exposed to oxygen. (a) Assuming that all the tin has reacted, what is the mass of the oxidized tin foil? (b) Air is about 21% oxygen by volume (d = 1.309 g/L at 25°C, 1 atm). How many liters of air are required to completely react with the tin foil? |D

General Chemistry - Standalone book (MindTap Course List)
11th Edition
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Chapter3: Calculations With Chemical Formulas And Equaitons
Section: Chapter Questions
Problem 3.128QP: Copper reacts with nitric acid according to the following reaction....
icon
Related questions
Question
60. When tin comes in contact with the oxygen in the air,
tin(IV) oxide, SnO2, is formed.
Sn(s) + O2(g)
SNO2(s)
A piece of tin foil, 8.25 cm × 21.5 cm × 0.600 mm
(d = 7.28 g/cm³), is exposed to oxygen.
(a) Assuming that all the tin has reacted, what is the
mass of the oxidized tin foil?
(b) Air is about 21% oxygen by volume (d = 1.309 g/L
at 25°C, 1 atm). How many liters of air are required to
completely react with the tin foil?
|D
Transcribed Image Text:60. When tin comes in contact with the oxygen in the air, tin(IV) oxide, SnO2, is formed. Sn(s) + O2(g) SNO2(s) A piece of tin foil, 8.25 cm × 21.5 cm × 0.600 mm (d = 7.28 g/cm³), is exposed to oxygen. (a) Assuming that all the tin has reacted, what is the mass of the oxidized tin foil? (b) Air is about 21% oxygen by volume (d = 1.309 g/L at 25°C, 1 atm). How many liters of air are required to completely react with the tin foil? |D
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 8 steps with 4 images

Blurred answer
Knowledge Booster
Stoichiometry
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
General Chemistry - Standalone book (MindTap Cour…
General Chemistry - Standalone book (MindTap Cour…
Chemistry
ISBN:
9781305580343
Author:
Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:
Cengage Learning
Chemistry: The Molecular Science
Chemistry: The Molecular Science
Chemistry
ISBN:
9781285199047
Author:
John W. Moore, Conrad L. Stanitski
Publisher:
Cengage Learning
Chemistry for Engineering Students
Chemistry for Engineering Students
Chemistry
ISBN:
9781337398909
Author:
Lawrence S. Brown, Tom Holme
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781133611097
Author:
Steven S. Zumdahl
Publisher:
Cengage Learning
Chemistry: An Atoms First Approach
Chemistry: An Atoms First Approach
Chemistry
ISBN:
9781305079243
Author:
Steven S. Zumdahl, Susan A. Zumdahl
Publisher:
Cengage Learning