2. The star-connected rotor of an induction motor has a standstill impedance of (0.4 + j4) ohm per phase and the rheostat impedance per phase is (6+j2) ohm. The motor has an induced e.m.f. of 80 V between slip-rings at standstill when connected to its normal supply voltage. Find (a) rotor current at standstill with the rheostat in the circuit (b) when the slip-rings are short-circuited and the motor is running with a slip of 3%. [5.27 A ; 3.3 A]

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question
2. The star-connected rotor of an induction motor has a standstill impedance of (0.4 + j4) ohm per phase
and the rheostat impedance per phase is (6+j2) ohm. The motor has an induced e.m.f. of 80 V
between slip-rings at standstill when connected to its normal supply voltage. Find (a) rotor current at
standstill with the rheostat in the circuit (b) when the slip-rings are short-circuited and the motor is
running with a slip of 3%.
3. A4-pole, 50-Hz induction motor has a full-load slip of 5%. Each rotor phase has a resistance of 0.3 Q
and a standstill reactance of 1.2 Q. Find the ratio of maximum torque to full-load torque and the speed
at which maximum torque occurs.
[5.27 A ; 3.3 A]
[2.6 ; 1125 r.p.m.]
Transcribed Image Text:2. The star-connected rotor of an induction motor has a standstill impedance of (0.4 + j4) ohm per phase and the rheostat impedance per phase is (6+j2) ohm. The motor has an induced e.m.f. of 80 V between slip-rings at standstill when connected to its normal supply voltage. Find (a) rotor current at standstill with the rheostat in the circuit (b) when the slip-rings are short-circuited and the motor is running with a slip of 3%. 3. A4-pole, 50-Hz induction motor has a full-load slip of 5%. Each rotor phase has a resistance of 0.3 Q and a standstill reactance of 1.2 Q. Find the ratio of maximum torque to full-load torque and the speed at which maximum torque occurs. [5.27 A ; 3.3 A] [2.6 ; 1125 r.p.m.]
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Three phase Induction Motor
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,