•10 GO Manufacturers of wire (and other objects of small dimension) sometimes use a laser to continually monitor the thickness of the product. The wire intercepts the laser beam, pro- ducing a diffraction pattern like that of a single slit of the same width as the wire diameter (Fig. 36-37). Suppose a helium-neon laser, of wavelength 632.8 nm, illuminates a wire, and the diffrac- tion pattern appears on a screen at distance L = 2.60 m. If the desired wire diameter is 1.37 mm, what is the observed distance between the two tenth-order minima (one on each side of the central maximum)?

icon
Related questions
Question
•10 GO
Manufacturers of wire (and other objects of small
dimension) sometimes use a laser to continually monitor the
thickness of the product. The wire intercepts the laser beam, pro-
ducing a diffraction pattern like that of a single slit of the same
width as the wire diameter (Fig. 36-37). Suppose a helium-neon
laser, of wavelength 632.8 nm, illuminates a wire, and the diffrac-
tion pattern appears on a screen at distance L = 2.60 m. If the
desired wire diameter is 1.37 mm, what is the observed distance
between the two tenth-order minima (one on each side of the
central maximum)?
Wire
He-Ne
laser
L
Figure 36-37 Problem 10.
Wire-making
machine
Transcribed Image Text:•10 GO Manufacturers of wire (and other objects of small dimension) sometimes use a laser to continually monitor the thickness of the product. The wire intercepts the laser beam, pro- ducing a diffraction pattern like that of a single slit of the same width as the wire diameter (Fig. 36-37). Suppose a helium-neon laser, of wavelength 632.8 nm, illuminates a wire, and the diffrac- tion pattern appears on a screen at distance L = 2.60 m. If the desired wire diameter is 1.37 mm, what is the observed distance between the two tenth-order minima (one on each side of the central maximum)? Wire He-Ne laser L Figure 36-37 Problem 10. Wire-making machine
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer