1 For parts (a) to (c) of this question, we consider the 2 x 3 matrix A = 0 1 (a) Compute AT A and show that its characteristic polynomial can be factored as: 1 0 1 XATA(X) = -X(X − 1)(x − 3) - (b) State the eigenvalues of ATA and find the eigenspace associated with each eigenval Hence determine if AT A is diagonalisable. (c) We can use the eigenvalues and eigenvectors of ATA to express A = UEVT as the mu plication of three matrices U, Σ and V. 00 The matrix Σ = (90) is a "diagonal" matrix consisting of oi's called singular values. The values o; are formed by the square root of the positive eigenval of AT A ordered in decreasing order. . The matrix V consists of columns vectors ; called right singular vectors of A. T vectors 's are eigenvectors of AT A normalised so that ||||=1 with respect to standard inner product on R³. The ordering of v; should be the same as that for • The matrix U consists of columns vectors u; called left singular vectors of A. If defin the vectors ; can be extracted by the identity uj = Av. (Note: In the next pa we will show that this identity is applicable for a more general m x n matrix). Evaluate the matrices U, E, and V for A and validate that A = UEVT.

Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter9: Systems Of Equations And Inequalities
Section9.7: The Inverse Of A Matrix
Problem 32E
icon
Related questions
Question

2.c)

For parts (a) to (c) of this question, we consider the 2 x 3 matrix A = (19)
01
(a) Compute AT A and show that its characteristic polynomial can be factored as:
XATA(X) = X(X - 1)(x-3)
(b) State the eigenvalues of ATA and find the eigenspace associated with each eigenvalue.
Hence determine if AT A is diagonalisable.
(c) We can use the eigenvalues and eigenvectors of ATA to express A = UEVT as the multi-
plication of three matrices U, Σ and V.
0
The matrix > =
8) is a "diagonal" matrix consisting of o's called the
0 02
singular values. The values o, are formed by the square root of the positive eigenvalues
of AT A ordered in decreasing order.
The matrix V consists of columns vectors i called right singular vectors of A. The
vectors 's are eigenvectors of AT A normalised so that |||| = 1 with respect to the
standard inner product on R3. The ordering of v; should be the same as that for ₂.
• The matrix U consists of columns vectors u; called left singular vectors of A. If defined,
the vectors u can be extracted by the identity uj
Av. (Note: In the next part,
we will show that this identity is applicable for a more general m x n matrix).
Evaluate the matrices U, E, and V for A and validate that A = UEVT.
Transcribed Image Text:For parts (a) to (c) of this question, we consider the 2 x 3 matrix A = (19) 01 (a) Compute AT A and show that its characteristic polynomial can be factored as: XATA(X) = X(X - 1)(x-3) (b) State the eigenvalues of ATA and find the eigenspace associated with each eigenvalue. Hence determine if AT A is diagonalisable. (c) We can use the eigenvalues and eigenvectors of ATA to express A = UEVT as the multi- plication of three matrices U, Σ and V. 0 The matrix > = 8) is a "diagonal" matrix consisting of o's called the 0 02 singular values. The values o, are formed by the square root of the positive eigenvalues of AT A ordered in decreasing order. The matrix V consists of columns vectors i called right singular vectors of A. The vectors 's are eigenvectors of AT A normalised so that |||| = 1 with respect to the standard inner product on R3. The ordering of v; should be the same as that for ₂. • The matrix U consists of columns vectors u; called left singular vectors of A. If defined, the vectors u can be extracted by the identity uj Av. (Note: In the next part, we will show that this identity is applicable for a more general m x n matrix). Evaluate the matrices U, E, and V for A and validate that A = UEVT.
Expert Solution
steps

Step by step

Solved in 6 steps

Blurred answer
Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
Elementary Linear Algebra (MindTap Course List)
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:
9781305658004
Author:
Ron Larson
Publisher:
Cengage Learning
Linear Algebra: A Modern Introduction
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
Calculus For The Life Sciences
Calculus For The Life Sciences
Calculus
ISBN:
9780321964038
Author:
GREENWELL, Raymond N., RITCHEY, Nathan P., Lial, Margaret L.
Publisher:
Pearson Addison Wesley,