Nonfiction > Harvard Classics > Charles Lyell > Scientific Papers
Charles Lyell (1797–1875).  Scientific Papers.
The Harvard Classics.  1909–14.
II. Uniformity Of Change
Supposed Alternate Periods of Repose and Disorder—Observed Facts in which this Doctrine has Originated—These may be Explained by Supposing a Uniform and Uninterrupted Series of Changes—Threefold Consideration of this Subject: First, in Reference to the Laws which Govern the Formation of Fossiliferous Strata, and the Shifting of the Areas of Sedimentary Deposition; Secondly, in Reference to the Living Creation, Extinction of Species, and Origin of New Animals and Plants; Thirdly, in Reference to the Changes Produced in the Earth’s Crust by the Continuance of Subterranean Movements in Certain Areas, and their Transference after Long Periods to New Areas—On the Combined Influence of all these Modes and Causes of Change in Producing Breaks and Chasms in the Chain of Records—Concluding Remarks on the Identity of the Ancient and Present System of Terrestrial Changes.
ORIGIN of the doctrine of alternate periods of repose and disorder.—It has been truly observed, that when we arrange the fossiliferous formations in chronological order, they constitute a broken and defective series of monuments: we pass without any intermediate gradations from systems of strata which are horizontal, to other systems which are highly inclined—from rocks of peculiar mineral composition to others which have a character wholly distinct—from one assemblage of organic remains to another, in which frequently nearly all the species, and a large part of the genera, are different. These violations of continuity are so common as to constitute in most regions the rule rather than the exception, and they have been considered by many geologists as conclusive in favour of sudden revolutions in the inanimate and animate world. We have already seen that according to the speculations of some writers, there have been in the past history of the planet alternate periods of tranquillity and convulsion, the former enduring for ages, and resembling the state of things now experienced by man; the other brief, transient, and paroxysmal, giving rise to new mountains, seas, and valleys, annihilating one set of organic beings, and ushering in the creation of another.  1
  It will be the object of the present chapter to demonstrate that these theoretical views are not borne out by a fair interpretation of geological monuments. It is true that in the solid framework of the globe we have a chronological chain of natural records, many links of which are wanting: but a careful consideration of all the phenomena leads to the opinion that the series was originally defective—that it has been rendered still more so by time—that a great part of what remains is inaccessible to man, and even of that fraction which is accessible nine-tenths or more are to this day unexplored.  2
  The readiest way, perhaps, of persuading the reader that we may dispense with great and sudden revolutions in the geological order of events is by showing him how a regular and uninterrupted series of changes in the animate and inanimate world must give rise to such breaks in the sequence, and such unconformability of stratified rocks, as are usually thought to imply convulsions and catastrophes. It is scarcely necessary to state that the order of events thus assumed to occur, for the sake of illustration, should be in harmony with all the conclusions legitimately drawn by geologists from the structure of the earth, and must be equally in accordance with the changes observed by man to be now going on in the living as well as in the inorganic creation. It may be necessary in the present state of science to supply some part of the assumed course of nature hypothetically; but if so, this must be done without any violation of probability, and always consistently with the analogy of what is known both of the past and present economy of our system. Although the discussion of so comprehensive a subject must carry the beginner far beyond his depth, it will also, it is hoped, stimulate his curiosity, and prepare him to read some elementary treatises on geology with advantage, and teach him the bearing on that science of the changes now in progress on the earth. At the same time it may enable him the better to understand the intimate connection between the Second and Third Books of this work, one of which is occupied with the changes of the inorganic, the latter with those of the organic creation.  3
  In pursuance, then, of the plan above proposed, I will consider in this chapter, first, the laws which regulate the denudation of strata and the deposition of sediment; secondly, those which govern the fluctuation in the animate world; and thirdly, the mode in which subterranean movements affect the earth’s crust.  4
  Uniformity of change considered, first, in reference to denudation and sedimentary deposition.—First, in regard to the laws governing the deposition of new strata. If we survey the surface of the globe, we immediately perceive that it is divisible into areas of deposition and non-deposition; or, in other words, at any given time there are spaces which are the recipients, others which are not the recipients, of sedimentary matter. No new strata, for example, are thrown down on dry land, which remains the same from year to year; whereas, in many parts of the bottom of seas and lakes, mud, sand, and pebbles are annually spread out by rivers and currents. There are also great masses of limestone growing in some seas, chiefly composed of corals and shells, or, as in the depths of the Atlantic, of chalky mud made up of foraminifera and diatomaceæ.  5
  As to the dry land, so far from being the receptacle of fresh accessions of matter, it is exposed almost everywhere to waste away. Forests may be as dense and lofty as those of Brazil, and may swarm with quadrupeds, birds, and insects, yet at the end of thousands of years one layer of black mould a few inches thick may be the sole representative of those myriads of trees, leaves, flowers, and fruits, those innumerable bones and skeletons of birds, quadrupeds, and reptiles, which tenanted the fertile region. Should this land be at length submerged, the waves of the sea may wash away in a few hours the scanty covering of mould, and it may merely impart a darker shade of colour to the next stratum of marl, sand, or other matter newly thrown down. So also at the bottom of the ocean where no sediment is accumulating, seaweed, zoophytes, fish, and even shells, may multiply for ages and decompose, leaving no vestige of their form or substance behind. Their decay, in water, although more slow, is as certain and eventually as complete as in the open air. Nor can they be perpetuated for indefinite periods in a fossil state, unless imbedded in some matrix which is impervious to water, or which at least does not allow a free percolation of that fluid, impregnated, as it usually is, with a slight quantity of carbonic or other acid. Such a free percolation may be prevented either by the mineral nature of the matrix itself, or by the superposition of an impermeable stratum; but if unimpeded, the fossil shell or bone will be dissolved and removed, particle after particle, and thus entirely effaced, unless petrifaction or the substitution of some mineral for the organic matter happen to take place.  6
  That there has been land as well as sea at all former geological periods, we know from the fact that fossil trees and terrestrial plants are imbedded in rocks of every age, except those which are so ancient as to be very imperfectly known to us. Occasionally lacustrine and fluviatile shells, or the bones of amphibious or land reptiles, point to the same conclusion. The existence of dry land at all periods of the past implies, as before mentioned, the partial deposition of sediment, or its limitation to certain areas; and the next point to which I shall call the reader’s attention is the shifting of these areas from one region to another.  7
  First, then, variations in the site of sedimentary deposition are brought about independently of subterranean movements. There is always a slight change from year to year, or from century to century. The sediment of the Rhone, for example, thrown into the Lake of Geneva, is now conveyed to a spot a mile and a half distant from that where it accumulated in the tenth century, and six miles from the point where the delta began originally to form. We may look forward to the period when this lake will be filled up, and then the distribution of the transported matter will be suddenly altered, for the mud and sand brought down from the Alps will thenceforth, instead of being deposited near Geneva, be carried nearly 200 miles southwards, where the Rhone enters the Mediterranean.  8
  In the deltas of large rivers, such as those of the Ganges and Indus, the mud is first carried down for many centuries through one arm, and on this being stopped up it is discharged by another, and may then enter the sea at a point 50 or 100 miles distant from its first receptacle. The direction of marine currents is also liable to be changed by various accidents, as by the heaping up of new sandbanks, or the wearing away of cliffs and promontories.  9
  But, secondly, all these causes of fluctuation in the sedimentary areas are entirely subordinate to those great upward or downward movements of land, which will presently be spoken of, as prevailing over large tracts of the globe. By such elevation or subsidence certain spaces are gradually submerged, or made gradually to emerge: in the one case sedimentary deposition may be suddenly renewed after having been suspended for one or more geological periods, in the other as suddenly made to cease after having continued for ages.  10
  If deposition be renewed after a long interval, the new strata will usually differ greatly from the sedimentary rocks previously formed in the same place, and especially if the older rocks have suffered derangement, which implies a change in the physical geography of the district since the previous conveyance of sediment to the same spot. It may happen, however, that, even where the two groups, the superior and the inferior, are horizontal and conformable to each other, they may still differ entirely in mineral character, because, since the origin of the older formation, the geography of some distant country has been altered. In that country rocks before concealed may have become exposed by denudation; volcanos may have burst out and covered the surface with scoriæ and lava; or new lakes, intercepting the sediment previously conveyed from the upper country, may have been formed by subsidence; and other fluctuations may have occurred, by which the materials brought down from thence by rivers to the sea have acquired a distinct mineral character.  11
  It is well known that the stream of the Mississippi is charged with sediment of a different colour from that of the Arkansas and Red Rivers, which are tinged with red mud, derived from rocks of porphyry and red gypseous clays in ‘the far west.’ The waters of the Uruguay, says Darwin, draining a granitic country, are clear and black, those of the Parana, red.  1 The mud with which the Indus is loaded, says Burnes, is of a clayey hue, that of the Chenab, on the other hand, is reddish, that of the Sutlej is more pale.  2 The same causes which make these several rivers, sometimes situated at no great distance the one from the other, to differ greatly in the character of their sediment, will make the waters draining the same country at different epochs, especially before and after great revolutions in physical geography, to be entirely dissimilar. It is scarcely necessary to add that marine currents will be affected in an analogous manner in consequence of the formation of new shoals, the emergence of new islands, the subsidence of others, the gradual waste of neighbouring coasts, the growth of new deltas, the increase of coral reefs, volcanic eruptions, and other changes.  12
  Uniformity of change considered, secondly, in reference to the living creation.—Secondly, in regard to the vicissitudes of the living creation, all are agreed that the successive groups of sedimentary strata found in the earth’s crust are not only dissimilar in mineral composition for reasons above alluded to, but are likewise distinguishable from each other by their organic remains. The general inference drawn from the study and comparison of the various groups, arranged in chronological order, is this: that at successive periods distinct tribes of animals and plants have inhabited the land and waters, and that the organic types of the newer formations are more analogous to species now existing than those of more ancient rocks. If we then turn to the present state of the animate creation, and enquire whether it has now become fixed and stationary, we discover that, on the contrary, it is in a state of continual flux—that there are many causes in action which tend to the extinction of species, and which are conclusive against the doctrine of their unlimited durability.  13
  There are also causes which give rise to new varieties and races in plants and animals, and new forms are continually supplanting others which had endured for ages. But natural history has been successfully cultivated for so short a period, that a few examples only of local, and perhaps but one or two of absolute, extirpation of species can as yet be proved, and these only where the interference of man has been conspicuous. It will nevertheless appear evident, from the facts and arguments detailed in the chapters which treat of the geographical distribution of species in the next volume, that man is not the only exterminating agent; and that, independently of his intervention, the annihilation of species is promoted by the multiplication and gradual diffusion of every animal or plant. It will also appear that every alteration in the physical geography and climate of the globe cannot fail to have the same tendency. If we proceed still farther, and enquire whether new species are substituted from time to time for those which die out, we find that the successive introduction of new forms appears to have been a constant part of the economy of the terrestrial system, and if we have no direct proof of the fact it is because the changes take place so slowly as not to come within the period of exact scientific observation. To enable the reader to appreciate the gradual manner in which a passage may have taken place from an extinct fauna to that now living, I shall say a few words on the fossils of successive Tertiary periods. When we trace the series of formations from the more ancient to the more modern, it is in these Tertiary deposits that we first meet with assemblages of organic remains having a near analogy to the fauna of certain parts of the globe in our own time. In the Eocene, or oldest subdivisions, some few of the testacea belong to existing species, although almost all of them, and apparently all the associated vertebrata, are now extinct. These Eocene strata are succeeded by a great number of more modern deposits, which depart gradually in the character of their fossils from the Eocene type, and approach more and more to that of the living creation. In the present state of science, it is chiefly by the aid of shells that we are enabled to arrive at these results, for of all classes the testacea are the most generally diffused in a fossil state, and may be called the medals principally employed by nature in recording the chronology of past events. In the Upper Miocene rocks (No. 5 of the table, p. 135) we begin to find a considerable number, although still a minority, of recent species, intermixed with some fossils common to the preceding, or Eocene, epoch. We then arrive at the Pliocene strata, in which species now contemporary with man begin to preponderate, and in the newest of which nine-tenths of the fossils agree with species still inhabiting the neighbouring sea. It is in the Post-Tertiary strata, where all the shells agree with species now living, that we have discovered the first or earliest known remains of man associated with the bones of quadrupeds, some of which are of extinct species.  14
  In thus passing from the older to the newer members of the Tertiary system, we meet with many chasms, but none which separate entirely, by a broad line of demarcation, one state of the organic world from another. There are no signs of an abrupt termination of one fauna and flora, and the starting into life of new and wholly distinct forms. Although we are far from being able to demonstrate geologically an insensible transition from the Eocene to the Miocene, or even from the latter to the recent fauna, yet the more we enlarge and perfect our general survey, the more nearly do we approximate to such a continuous series, and the more gradually are we conducted from times when many of the genera and nearly all the species were extinct, to those in which scarcely a single species flourished which we do not know to exist at present. Dr. A. Philippi, indeed, after an elaborate comparison of the fossil tertiary shells of Sicily with those now living in the Mediterranean, announced, as the result of his examination, that there are strata in that island which attest a very gradual passage from a period when only thirteen in a hundred of the shells were like the species now living in the sea, to an era when the recent species had attained a proportion of ninetyfive in a hundred. There is, therefore, evidence, he says, in Sicily of this revolution in the animate world having been effected ‘without the intervention of any convulsion or abrupt changes, certain species having from time to time died out, and others having been introduced, until at length the existing fauna was elaborated.’  15
  In no part of Europe is the absence of all signs of man or his works, in strata of comparatively modern date, more striking than in Sicily. In the central parts of that island we observe a lofty table-land and hills, sometimes rising to the height of 3,000 feet, capped with a limestone, in which from 70 to 85 per cent. of the fossil testacea are specifically identical with those now inhabiting the Mediterranean. These calcareous and other argillaceous strata of the same age are intersected by deep valleys which appear to have been gradually formed by denudation, but have not varied materially in width or depth since Sicily was first colonised by the Greeks. The limestone, moreover, which is of so late a date in geological chronology, was quarried for building those ancient temples of Girgenti and Syracuse, of which the ruins carry us back to a remote era in human history. If we are lost in conjectures when speculating on the ages required to lift up these formations to the height of several thousand feet above the sea, and to excavate the valleys, how much more remote must be the era when the same rocks were gradually formed beneath the waters!  16
  The intense cold of the Glacial period was spoken of in the tenth chapter. Although we have not yet succeeded in detecting proofs of the origin of man antecedently to that epoch, we have yet found evidence that most of the testacea, and not a few of the quadrupeds, which preceded, were of the same species as those which followed the extreme cold. To whatever local disturbances this cold may have given rise in the distribution of species, it seems to have done little in effecting their annihilation. We may conclude therefore, from a survey of the tertiary and modern strata, which constitute a more complete and unbroken series than rocks of older date, that the extinction and creation of species have been, and are, the result of a slow and gradual change in the organic world.  17
  Uniformity of change considered, thirdly, in reference to subterranean movements.—Thirdly, to pass on to the last of the three topics before proposed for discussion, the reader will find, in the account given in the Second Book, Vol. II., of the earthquakes recorded in history, that certain countries have from time immemorial, been rudely shaken again and again; while others, comprising by far the largest part of the globe, have remained to all appearance motionless. In the regions of convulsion rocks have been rent asunder, the surface has been forced up into ridges, chasms have opened, or the ground throughout large spaces has been permanently lifted up above or let down below its former level. In the regions of tranquillity some areas have remained at rest, but others have been ascertained, by a comparison of measurements made at different periods, to have risen by an insensible motion, as in Sweden, or to have subsided very slowly, as in Greenland. That these same movements, whether ascending or descending, have continued for ages in the same direction has been established by historical or geological evidence. Thus we find on the opposite coasts of Sweden that brackish water deposits, like those now forming in the Baltic, occur on the eastern side, and upraised strata filled with purely marine shells, now proper to the ocean, on the western coast. Both of these have been lifted up to an elevation of several hundred feet above high-water mark. The rise within the historical period has not amounted to many yards, but the greater extent of antecedent upheaval is proved by the occurrence in inland spots, several hundred feet high, of deposits filled with fossil shells of species now living either in the ocean or the Baltic.  18
  It must in general be more difficult to detect proofs of slow and gradual subsidence than of elevation, but the theory which accounts for the form of circular coral reefs and lagoon islands, and which will be explained in the concluding chapter of this work, will satisfy the reader that there are spaces on the globe, several thousand miles in circumference, throughout which the downward movement has predominated for ages, and yet the land has never, in a single instance, gone down suddenly for several hundred feet at once. Yet geology demonstrates that the persistency of subterranean movements in one direction has not been perpetual throughout all past time. There have been great oscillations of level, by which a surface of dry land has been submerged to a depth of several thousand feet, and then at a period long subsequent raised again and made to emerge. Nor have the regions now motionless been always at rest; and some of those which are at present the theatres of reiterated earthquakes have formerly enjoyed a long continuance of tranquillity. But, although disturbances have ceased after having long prevailed, or have recommenced after a suspension for ages, there has been no universal disruption of the earth’s crust or desolation of the surface since times the most remote. The non-occurrence of such a general convulsion is proved by the perfect horizontality now retained by some of the most ancient fossiliferous strata throughout wide areas.  19
  That the subterranean forces have visited different parts of the globe at successive periods is inferred chiefly from the unconformability of strata belonging to groups of different ages. Thus, for example, on the borders of Wales and Shropshire, we find the slaty beds of the ancient Silurian system inclined and vertical, while the beds of the overlying carboniferous shale and sandstone are horizontal. All are agreed that in such a case the older set of strata had suffered great disturbance before the deposition of the newer or carboniferous beds, and that these last have never since been violently fractured, nor have ever been bent into folds, whether by sudden or continuous lateral pressure. On the other hand, the more ancient or Silurian group suffered only a local derangement, and neither in Wales nor elsewhere are all the rocks of that age found to be curved or vertical.  20
  In various parts of Europe, for example, and particularly near Lake Wener in the south of Sweden, and in many parts of Russia, the Silurian strata maintain the most perfect horizontality; and a similar observation may be made respecting limestones and shales of like antiquity in the great lake district of Canada and the United States. These older rocks are still as flat and horizontal as when first formed; yet, since their origin, not only have most of the actual mountain-chains been uplifted, but some of the very rocks of which those mountains are composed have been formed, some of them by igneous and others by aqueous action.  21
  It would be easy to multiply instances of similar unconformability in formations of other ages; but a few more will suffice. The carboniferous rocks before alluded to as horizontal on the borders of Wales are vertical in the Mendip hills in Somersetshire, where the overlying beds of the New Red Sandstone are horizontal. Again, in the Wolds of Yorkshire the last-mentioned sandstone supports on its curved and inclined beds the horizontal Chalk. The Chalk again is vertical on the flanks of the Pyrenees, and the tertiary strata repose unconformably upon it.  22
  As almost every country supplies illustrations of the same phenomena, they who advocate the doctrine of alternate periods of disorder and repose may appeal to the facts above described, as proving that every district has been by turns convulsed by earthquakes and then respited for ages from convulsions. But so it might with equal truth be affirmed that every part of Europe has been visited alternately by winter and summer, although it has always been winter and always summer in some part of the planet, and neither of these seasons has ever reigned simultaneously over the entire globe. They have been always shifting from place to place; but the vicissitudes which recur thus annually in a single spot are never allowed to interfere with the invariable uniformity of seasons throughout the whole planet.  23
  So, in regard to subterranean movements, the theory of the perpetual uniformity of the force which they exert on the earth’s crust is quite consistent with the admission of their alternate development and suspension for long and indefinite periods within limited geographical areas.  24
  If, for reasons before stated, we assume a continual extinction of species and appearance of others on the globe, it will then follow that the fossils of strata formed at two distant periods on the same spot will differ even more certainly than the mineral composition of those strata. For rocks of the same kind have sometimes been reproduced in the same district after a long interval of time; whereas all the evidence derived from fossil remains is in favour of the opinion that species which have once died out have never been reproduced. The submergence, then, of land must be often attended by the commencement of a new class of sedimentary deposits, characterized by a new set of fossil animals and plants, while the reconversion of the bed of the sea into land may arrest at once and for an indefinite time the formation of geological monuments. Should the land again sink, strata will again be formed; but one or many entire revolutions in animal or vegetable life may have been completed in the interval.  25
  As to the want of completeness in the fossiliferous series, which may be said to be almost universal, we have only to reflect on what has been already said of the laws governing sedimentary deposition, and those which give rise to fluctuations in the animate world, to be convinced that a very rare combination of circumstances can alone give rise to such a superposition and preservation of strata as will bear testimony to the gradual passage from one state of organic life to another. To produce such strata nothing less will be requisite than the fortunate coincidence of the following conditions: first, a never-failing supply of sediment in the same region throughout a period of vast duration; secondly, the fitness of the deposit in every part for the permanent preservation of imbedded fossils; and, thirdly, a gradual subsidence to prevent the sea or lake from being filled up and converted into land.  26
  It will appear in the chapter on coral reefs, that, in certain parts of the Pacific and Indian Oceans, most of these conditions, if not all, are complied with, and the constant growth of coral, keeping pace with the sinking of the bottom of the sea, seems to have gone on so slowly, for such indefinite periods, that the signs of a gradual change in organic life might probably be detected in that quarter of the globe if we could explore its submarine geology. Instead of the growth of coralline limestone, let us suppose, in some other place, the continuous deposition of fluviatile mud and sand, such as the Ganges and Brahmapootra have poured for thousands of years into the Bay of Bengal. Part of this bay, although of considerable depth, might at length be filled up before an appreciable amount of change was effected in the fish, mollusca, and other inhabitants of the sea and neighbouring land. But if the bottom be lowered by sinking at the same rate that it is raised by fluviatile mud, the bay can never be turned into dry land. In that case one new layer of matter may be superimposed upon another for a thickness of many thousand feet, and the fossils of the inferior beds may differ greatly from those entombed in the uppermost, yet every intermediate gradation may be indicated in the passage from an older to a newer assemblage of species. Granting, however, that such an unbroken sequence of monuments may thus be elaborated in certain parts of the sea, and that the strata happen to be all of them well adapted to preserve the included fossils from decomposition, how many accidents must still concur before these submarine formations will be laid open to our investigation! The whole deposit must first be raised several thousand feet, in order to bring into view the very foundation; and during the process of exposure the superior beds must not be entirely swept away by denudation.  27
  In the first place, the chances are nearly as three to one against the mere emergence of the mass above the waters, because nearly three-fourths of the globe are covered by the ocean. But if it be upheaved and made to constitute part of the dry land, it must also, before it can be available for our instruction, become part of that area already surveyed by geologists. In this small fraction of land already explored, and still very imperfectly known, we are required to find a set of strata deposited under peculiar conditions, and which, having been originally of limited extent, would have been probably much lessened by subsequent denudation.  28
  Yet it is precisely because we do not encounter at every step the evidence of such gradations from one state of the organic world to another, that so many geologists have embraced the doctrine of great and sudden revolutions in the history of the animate world. Not content with simply availing themselves, for the convenience of classification, of those gaps and chasms which here and there interrupt the continuity of the chronological series, as at present known, they deduce, from the frequency of these breaks in the chain of records, an irregular mode of succession in the events themselves, both in the organic and inorganic world. But, besides that some links of the chain which once existed are now entirely lost and others concealed from view, we have good reason to suspect that it was never complete originally.  29
  It may undoubtedly be said that strata have been always forming somewhere, and therefore at every moment of past time Nature has added a page to her archives; but, in reference to this subject, it should be remembered that we can never hope to compile a consecutive history by gathering together monuments which were originally detached and scattered over the globe. For, as the species of organic beings contemporaneously inhabiting remote regions are distinct, the fossils of the first of several periods which may be preserved in any one country, as in America for example, will have no connection with those of a second period found in India, and will therefore no more enable us to trace the signs of a gradual change in the living creation, than a fragment of Chinese history will fill up a blank in the political annals of Europe.  30
  The absence of any deposits of importance containing recent shells in Chili, or anywhere on the western coast of South America, naturally led Mr. Darwin to the conclusion that ‘where the bed of the sea is either stationary or rising, circumstances are far less favourable than where the level is sinking to the accumulation of conchiferous strata of sufficient thickness and extension to resist the average vast amount of denudation.’  3 In like manner the beds of superficial sand, clay, and gravel, with recent shells, on the coasts of Norway and Sweden, where the land has risen in Post-tertiary times, are so thin and scanty as to incline us to admit a similar proposition. We may in fact assume that in all cases where the bottom of the sea has been undergoing continuous elevation, the total thickness of sedimentary matter accumulating at depths suited to the habitation of most of the species of shells can never be great, nor can the deposits be thickly covered by superincumbent matter, so as to be consolidated by pressure. When they are upheaved, therefore, the waves on the beach will bear down and disperse the loose materials; whereas, if the bed of the sea subsides slowly, a mass of strata, containing abundance of such species as live at moderate depths, may be formed and may increase in thickness to any amount. It may also extend horizontally over a broad area, as the water gradually encroaches on the subsiding land.  31
  Hence it will follow that great violations of continuity in the chronological series of fossiliferous rocks will always exist, and the imperfection of the record, though lessened, will never be removed by future discoveries. For not only will no deposits originate on the dry land, but those formed in the sea near land, which is undergoing constant upheaval, will usually be too slight in thickness to endure for ages.  32
  In proportion as we become acquainted with larger geographical areas, many of the gaps, by which a chronological table, like that given at page 135, is rendered defective, will be removed. We were enabled by aid of the labours of Prof. Sedgwick and Sir Roderick Murchison, to intercalate, in 1838, the marine strata of the Devonian period, with their fossil shells, corals, and fish, between the Silurian and Carboniferous rocks. Previously the marine fauna of these lastmentioned formations wanted the connecting links which now render the passage from the one to the other much less abrupt. In like manner the Upper Miocene has no representative in England, but in France, Germany, and Switzerland it constitutes a most instructive link between the living creation and the middle of the great Tertiary period. Still we must expect, for reasons before stated, that chasms will for ever continue to occur, in some parts of our sedimentary series.  33
  Concluding remarks on the consistency of the theory of gradual change with the existence of great breaks in the series.—To return to the general argument pursued in this chapter, it is assumed, for reasons above explained, that a slow change of species is in simultaneous operation everywhere throughout the habitable surface of sea and land; whereas the fossilisation of plants and animals is confined to those areas where new strata are produced. These areas, as we have seen, are always shifting their position, so that the fossilising process, by means of which the commemoration of the particular state of the organic world, at any given time, is effected, may be said to move about, visiting and revisiting different tracts in succession.  34
  To make still more clear the supposed working of this machinery, I shall compare it to a somewhat analogous case that might be imagined to occur in the history of human affairs. Let the mortality of the population of a large country represent the successive extinction of species, and the births of new individuals the introduction of new species. While these fluctuations are gradually taking place everywhere, suppose commissioners to be appointed to visit each province of the country in succession, taking an exact account of the number, names, and individual peculiarities of all the inhabitants, and leaving in each district a register containing a record of this information. If, after the completion of one census, another is immediately made on the same plan, and then another, there will at last be a series of statistical documents in each province. When those belonging to any one province are arranged in chronological order, the contents of such as stand next to each other will differ according to the length of the intervals of time between the taking of each census. If, for example, there are sixty provinces, and all the registers are made in a single year and renewed annually, the number of births and deaths will be so small, in proportion to the whole of the inhabitants, during the interval between the compiling of two consecutive documents, that the individuals described in such documents will be nearly identical; whereas, if the survey of each of the sixty provinces occupies all the commissioners for a whole year, so that they are unable to revisit the same place until the expiration of sixty years, there will then be an almost entire discordance between the persons enumerated in two consecutive registers in the same province. There are, undoubtedly, other causes, besides the mere quantity of time, which may augment or diminish the amount of discrepancy. Thus, at some periods a pestilential disease may have lessened the average duration of human life; or a variety of circumstances may have caused the births to be unusually numerous, and the population to multiply; or a province may be suddenly colonised by persons migrating from surrounding districts.  35
  These exceptions may be compared to the accelerated rate of fluctuations in the fauna and flora of a particular region, in which the climate and physical geography may be undergoing an extraordinary degree of alteration.  36
  But I must remind the reader that the case above proposed has no pretensions to be regarded as an exact parallel to the geological phenomena which I desire to illustrate; for the commissioners are supposed to visit the different provinces in rotation; whereas the commemorating processes by which organic remains become fossilised, although they are always shifting from one area to the other, are yet very irregular in their movements. They may abandon and revisit many spaces again and again, before they once approach another district; and, besides this source of irregularity, it may often happen that, while the depositing process is suspended, denudation may take place, which may be compared to the occasional destruction by fire or other causes of some of the statistical documents before mentioned. It is evident that where such accidents occur the want of continuity in the series may become indefinitely great, and that the monuments which follow next in succession will by no means be equidistant from each other in point of time.  37
  If this train of reasoning be admitted, the occasional distinctness of the fossil remains, in formations immediately in contact, would be a necessary consequence of the existing laws of sedimentary deposition and subterranean movement, accompanied by a constant dying-out and renovation of species.  38
  As all the conclusions above insisted on are directly opposed to opinions still popular, I shall add another comparison, in the hope of preventing any possible misapprehension of the argument. Suppose we had discovered two buried cities at the foot of Vesuvius, immediately superimposed upon each other, with a great mass of tuff and lava intervening, just as Portici and Resina, if now covered with ashes, would overlie Herculaneum. An antiquary might possibly be entitled to infer, from the inscriptions on public edifices, that the inhabitants of the inferior and older city were Greeks, and those of the modern towns Italians. But he would reason very hastily if he also concluded from these data, that there had been a sudden change from the Greek to the Italian language in Campania. But if he afterwards found three buried cities, one above the other, the intermediate one being Roman, while, as in the former example, the lowest was Greek and the uppermost Italian, he would then perceive the fallacy of his former opinion, and would begin to suspect that the catastrophes, by which the cities were inhumed might have no relation whatever to the fluctuations in the language of the inhabitants; and that, as the Roman tongue had evidently intervened between the Greek and Italian, so many other dialects may have been spoken in succession, and the passage from the Greek to the Italian may have been very gradual, some terms growing obsolete, while others were introduced from time to time.  39
  If this antiquary could have shown that the volcanic paroxysms of Vesuvius were so governed as that cities should be buried one above the other, just as often as any variation occurred in the language of the inhabitants, then, indeed, the abrupt passage from a Greek to a Roman, and from a Roman to an Italian city, would afford proof of fluctuations no less sudden in the language of the people.  40
  So, in Geology, if we could assume that it is part of the plan of Nature to preserve, in every region of the globe, an unbroken series of monuments to commemorate the vicissitudes of the organic creation, we might infer the sudden extirpation of species, and the simultaneous introduction of others, as often as two formations in contact are found to include dissimilar organic fossils. But we must shut our eyes to the whole economy of the existing causes, aqueous, igneous, and organic, if we fail to perceive that such is not the plan of Nature.  41
  I shall now conclude the discussion of a question with which we have been occupied since the beginning of the fifth chapter—namely, whether there has been any interruption, from the remotest periods, of one uniform and continuous system of change in the animate and inanimate world. We were induced to enter into that enquiry by reflecting how much the progress of opinion in Geology had been influenced by the assumption that the analogy was slight in kind, and still more slight in degree, between the causes which produced the former revolutions of the globe, and those now in every-day operation. It appeared clear that the earlier geologists had not only a scanty acquaintance with existing changes, but were singularly unconscious of the amount of their ignorance. With the presumption naturally inspired by this unconsciusness, they had no hesitation in deciding at once that time could never enable the existing powers of nature to work out changes of great magnitude, still less such important revolutions as those which are brought to light by Geology. They therefore felt themselves at liberty to indulge their imaginations in guessing at what might be, rather than enquiring what is; in other words, they employed themselves in conjecturing what might have been the course of Nature at a remote period, rather than in the investigation of what was the course of Nature in their own times.  42
  It appeared to them far more philosophical to speculate on the possibilities of the past, than patiently to explore the realities of the present; and having invented theories under the influence of such maxims, they were consistently unwilling to test their validity by the criterion of their accordance with the ordinary operations of Nature. On the contrary, the claims of each new hypothesis to credibility appeared enhanced by the great contrast, in kind or intensity, of the causes referred to and those now in operation.  43
  Never was there a dogma more calculated to foster indolence, and to blunt the keen edge of curiosity, than this assumption of the discordance between the ancient and existing causes of change. It produced a state of mind unfavourable in the highest degree to the candid reception of the evidence of those minute but incessant alterations which every part of the earth’s surface is undergoing, and by which the condition of its living inhabitants is continually made to vary. The student, instead of being encouraged with the hope of interpreting the enigmas presented to him in the earth’s structure—instead of being prompted to undertake laborious enquiries into the natural history of the organic world, and the complicated effects of the igneous and aqueous causes now in operation—was taught to despond from the first. Geology, it was affirmed, could never rise to the rank of an exact science; the greater number of phenomena must for ever remain inexplicable, or only be partially elucidated by ingenious conjectures. Even the mystery which invested the subject was said to constitute one of its principal charms, affording, as it did, full scope to the fancy to indulge in a boundless field of speculation.  44
  The course directly opposed to this method of philosophising consists in an earnest and patient enquiry, how far geological appearances are reconcilable with the effect of changes now in progress, or which may be in progress in regions inaccessible to us, but of which the reality is attested by volcanos and subterranean movements. It also endeavours to estimate the aggregate result of ordinary operations multiplied by time, and cherishes a sanguine hope that the resources to be derived from observation and experiment, or from the study of Nature such as she now is, are very far from being exhausted. For this reason all theories are rejected which involve the assumption of sudden and violent catastrophes and revolutions of the whole earth, and its inhabitants—theories which are restrained by no reference to existing analogies, and in which a desire is manifested to cut, rather than patiently to untie, the Gordian knot.  45
  We have now, at least, the advantage of knowing, from experience, that an opposite method has always put geologists on the road that leads to truth—suggesting views which, although imperfect at first, have been found capable of improvement, until at last adopted by universal consent; while the method of speculating on a former distinct state of things and causes has led invariably to a multitude of contradictory systems, which have been overthrown one after the other—have been found incapable of modification—and which have often required to be precisely reversed.  46
  The remainder of this work will be devoted to an investigation of the changes now going on in the crust of the earth and its inhabitants. The importance which the student will attach to such researches will mainly depend on the degree of confidence which he feels in the principles above expounded. If he firmly believes in the resemblance or identity of the ancient and present system of terrestrial changes, he will regard every fact collected respecting the cause in diurnal action as affording him a key to the interpretation of some mystery in the past. Events which have occurred at the most distant periods in the animate and inanimate world will be acknowledged to throw light on each other, and the deficiency of our information respecting some of the most obscure parts of the present creation will be removed. For as, by studying the external configuration of the existing land and its inhabitants, we may restore in imagination the appearance of the ancient continents which have passed away, so may we obtain from the deposits of ancient seas and lakes an insight into the nature of the subaqueous processes now in operation, and of many forms of organic life which, though now existing, are veiled from sight. Rocks, also, produced by subterranean fire in former ages, at great depths in the bowels of the earth, present us, when upraised by gradual movements, and exposed to the light of heaven, with an image of those changes which the deepseated volcano may now occasion in the nether regions. Thus, although we are mere sojourners on the surface of the planet, chained to a mere point in space, enduring but for a moment of time, the human mind is not only enabled to number worlds beyond the unassisted ken of mortal eye, but to trace the events of indefinite ages before the creation of our race, and is not even withheld from penetrating into the dark secrets of the ocean, or the interior of the solid globe; free, like the spirit which the poet described as animating the universe,
        ——ire per omnes
  Terrasque, tractusque maris, cœlumque profundum. 4  48
Note 1. Darwin’s Journal, p. 163, 2nd edit., p. 139. [back]
Note 2. Journ. Roy. Geograph. Soc., vol. iii., p. 142. [back]
Note 3. Darwin’s S. America, pp. 136, 139. [back]
Note 4. “To go through all lands, and the tracts of the ocean, and the boundless heaven.” [back]

Click here to shop the Bartleby Bookstore.

Shakespeare · Bible · Strunk · Anatomy · Nonfiction · Quotations · Reference · Fiction · Poetry
© 1993–2014 · [Top 150] · Subjects · Titles · Authors