Although an ordinary H2 molecule consists of two identical atoms, this is not the case for the molecule HD, with one atom of deuterium (Le., heavy hydrogen, 2H). Because of its small moment of inertia, the HD molecule has a relatively large value of E: 0.0057 eV. At approximately what temperature would you expect the rotational heat capacity of a gas of HD molecules to "freeze out," that is, to fall significantly below the constant value predicted by the equipartition theorem?

Principles of Physics: A Calculus-Based Text
5th Edition
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Raymond A. Serway, John W. Jewett
Chapter17: Energy In Thermal Processes: The First Law Of Thermodynamics
Section: Chapter Questions
Problem 55P
icon
Related questions
Question

Although an ordinary H2 molecule consists of two identical atoms, this is not the case for the molecule HD, with one atom of deuterium (Le., heavy hydrogen, 2H). Because of its small moment of inertia, the HD molecule has a relatively large value of E: 0.0057 eV. At approximately what temperature would you expect the rotational heat capacity of a gas of HD molecules to "freeze out," that is, to fall significantly below the constant value predicted by the equipartition theorem?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Average values
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Principles of Physics: A Calculus-Based Text
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers with Modern …
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning